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Introduction 

The verification document presents FS2000 solutions to a range of problems which have solutions available 

from another sources. These solutions may be analytical, analysis solutions in the public domain or other 

software packages. 

A comparison with third party solutions is not always that exact.  Models may not be that same or have the 

same degree of refinement when comparing FE solutions. Analytical solutions may differ because of numerical 

accuracy or the difficulty in imposing the precisely the same idealised conditions.  For this reason, no attempt 

has been made to include % comparisons. 

This document is not intended as a tutorial document and the model description etc. have been restricted to 

single page for each problem regardless of example complexity. However, the solutions may be useful in 

illustrating the approach to various types of problems. 

Although areas of application overlap, an attempt has been made to broadly categorise the solution by section 

heading. 

Section 1  Generally Linear – Can be solved using the Standard 3-D solver. 

Section 2 Non-Linear – P-Delta and Large Displacement 

Section 3  Non-Linear – Large Displacement (Flexibles) 

Section 4  Non-Linear - Elasto-Plastic  

Section 5 Dynamic 

Section 6  Heat Transfer 

Section 7 Specific Applications 

 

Note that 2-D and 3-D Elasto-Plastic solid solutions can only be solved using DyNoFlex because the degrees of 

freedom (DoF) are defined as 2 or 3 accordingly. Plastic shell (6 DoF) solutions can be solved using 3-D Non-

Linear.  

Earlier version of FS2000 may experience convergence issues with some Elasto-Plastic solutions that use solid 

elements. 

 

 

 

  

  



FS2000 Analysis  

      Verification Examples Page  2 

Example 1.1 Plane Frame –  Beam Elements 

Model: PlaneFrame1 

The example is a two-element rigid frame with fully fixed supports.  Two cases are considered, one with 

concentrated nodal loads and one with distributed elements loads. 

I = 8E-4m4; A = 2E-3m2; E = 210GPa 

 

    Case 1 Evaluate the nodal displacements. 

 

 

           Case 2 Evaluate the moment distribution. 

 

 

Reference Solution: Structural Analysis, RC Coates, MG Coutie, FG Kong, Second Edition 1980 Page 254-255. 

The refence solution values are shown in parentheses. 

 

Case 1 

ΔX = -0.4478mm (0.448mm) 

ΔY = -.01024mm (0.102) 

Δθ = -8.215E-4Rad (8.22E-4) 

 

 

Case 2 

Moment at A = 2.86kNm (2.86) 

Moment At B = 5.74kNm (5.74 

Moment At c = 26.91Nm (26.9  
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Example 1.2 Simple Truss –  Beam and Couple Elements  

Mode:PinnedTruss 

This is a simple pinned truss is modelled with rigid beam elements but because of the slenderness and the fact 

that there are only nodal forces, the frame behaves as pinned structure. Two of the elements are connected to 

the frame using couple elements. These couple elements have stiffness about 1000 times that of the beam 

axial stiffness. The couple local axis is referenced to the connected beams i.e. the local x axis are aligned. The 

model is restrained using node to ground couples using a similar stiffness. 

 

 

 

 

 

 

Reference Solution: Theory of Matrix Structural Analysis, J.S. Przemeiniecki, 1985, Page229. 

  

Member axial forces       Couple Forces 

The couple forces show the restrained reactions and the forces in E1 and E3 at the connection points. 

The following table give the normalised axial forces from the reference solution. 

1 2 3 4 5 6 7 8 9 10 11 

0.442 .442 0.789 -0.625 -0.558 0 1.558 0.625 -0.798 -1.442 -0.442 
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Example 1.3 Plane Frame Contact –  Beam and Couple Elements  

Mode:BeamContact 

This is a frame arrangement formed with rigid beam elements.  The model incorporates a compression only 

contact element at point C. The objective is to establish the support reaction. 

To ensure compatibly with the reference solution the area of 

the section is defined with high value, the shear is made zero 

and the I value were varied using the E values. 

The solution uses the Standard 3-D Solver with the Contact 

Option active. 

 

Reference Solution: Structural Analysis, RC Coates, MG Coutie, FG Kong, Second Edition 1980 Page 185. 

 

Case 1 Downward Loads. 

Case 2 Upward Loads. 

 

 

 

Case I Contact Closed 

The refence solution values are shown in parentheses. 

Action A B C 

Vertical kN 47.77 (47.8) 317.79 (318) 84.44 (84.4) 

Horizontal kN 20.80 (20.8) 0 -20.80 (20.8) 

Moment kNm 20.78 (20.8) 0 0 

 

 

 

Case 2 Contact Open 

No reference solution but solution clearly in equilibrium. 

Action A B C 

Vertical kN -252.49 000.00 -197.51 

Horizontal kN -249.84 0 249.84 

Moment kNm -249.65 0 0 
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Example 1.4 Pressurised Pipe –  Pipe Element  

Model: Pipe 

The is an example of a pipe undergoing changes in pressure and temperature. Several different loading 

scenarios are considered.  

Reference Solution: Roark. 

Pipe Diameter = 219.1mm; Wall = 8.18mm;  D/t =26.78. 

E =203GPa; Poiss Ratio = 0.3; Coeff of Thermal Exp = 1.093E-5 

Internal Pressure = 200Bar: External Pressure = 20 Bar 

Change in Temperature 100C 

The pipe is fully fixed at the LHS.  The RHS has two conditions, axially free or axially restrained. 

Case 1  Pressure only - free 

Case 2 Temperature only - free 

Case 3 Pressure and temperature – free 

Case 4  Pressure only - fixed 

Case 5 Temperature only - fixed 

Case 6 Pressure and temperature – fixed 

In pipe stiffness analysis the pipe ends are always assumed to be end capped and therefore when the pipe is 

fixed both the end cap pressure load and the wall restrain load contribute the restraining reaction. In this 

model the effective axial force is also the restraint reaction. The effective axial force is the force that can cause 

Euler buckling. In FS2000 the pipe axial force is always the effective axial force. 

Theory 

The evaluated hoop stress the standard output from FS2000 always uses Sh =  Δp.Do/2t . Note that this may be 

different from that used in piping design codes 

Roark presents formula for the axial displacement of thick-walled cylinders subjected to both internal and 

external pressure. These can be combined and re-arranged the give the following. 

Pressure strain is based on εP = (1 - 2.µ)(Pi.Ai - Po.Ao) / ( EAs) = 2.07E-4 

Thermal Strain  εT = α.ΔT = 1.093E-3 

Pressure Restraint force = εP.As.E = 2.281E5  Thermal Restraint force = εT.As.E = 1.2049E6 

True Wall Axial Stress = (Effective Axial Force + End Cap Force) / As 

End Cap Force = Pi.Ai - Po.Ao = 5.70E5:  As = 5.4202E-3 

The above agree exactly with the solution output given in the table. 

Case No Hoop Stress 
MPa 

True Wall Axial Stress 
MPa 

Effective Axial Force 
kN 

End Displacement 
mm 

1 241.05 105.21 0 0.207 

2 0 0 0 1.093 

3 241.6 105.21 0 1.3 

4 241.6 63.13 -228.1 0 

5 0 -222.32 -1204.95 0 

6 241.6 -159.19 -1433.05 0 
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Example 1.5 Piping Flexibility Analysis –  Pipe Elements  

Model: Piping2 

This is a B31.3 example of a piping system subjected to gravitational, internal pressure and thermal expansion. 

The arrangement has two pipe bends that significantly reduce the expansion load induces in the pipe. 

OD 406.4mm (16”); Wall 9.53mm 

Bend Radius 609.6mm (1.5D) 

Material: ASTM A106Grade B 

E = 203.4GP; μ = 0.3; αT = 1.093E-5; Density 7850 kg/m3 

Bend Flexibility factor = 9.506 (FS2000 evaluated) 

Pipe weight 248.36 kg/m 

The pipe weight effect contents (SG-1) and insulation coating 127mm thick density 176kg/m3. 

Reference Solution: ASME B31.3 – 2010, Appendix S, Example 1 S301.  

The refence solution values are shown in parentheses (averaged from commercial programs). 

Note that longitudinal pressure effects are excluded for the expansion case. 

Node  Axial Force Bending Moment X Deflection Y Deflection 

10 26.53 (26.5) 21.4 (21.52) 0 0 

15 26.53 (26.5) 10.64 (10.71) 18.361 (18.3) -1.304 (-1.3) 

20 26.53 (26.5) 47.91 (47.56) 36.698 (36.7) 0 

45 26.56 (26.5) 14.93 (14.9) -18.361 (-18.3) 13.461 (13.5) 

50 26.53 (26.5) 47.29 (47.48) 0 0 

 

 

 

 

 

 

 

 

 

 

 

  



FS2000 Analysis  

      Verification Examples Page  7 

Example 1.6 Piping Flexibility Analysis –  Pipe Elements  

Model: Piping3 

This is a B31.3 example of a piping system subjected to internal pressure and thermal expansion. The objective 

to evaluate the displacement stress/force ranges resulting from two operational conditions. 

Header 

OD 609.6mm (24”); Wall 9.53mm 

Branch 

OD 508mm (20”); Wall 9.53mm 

Material: ASTM A53Grade B 

E = 203.4GP; μ = 0.3; αT = 1.093E-5; Density 7850 kg/m3 

Valve Stiffness Factor = 10 

Ambient Temp = 4.5C 

Condition Headers West Branch 30-330 East Branch 40-340 

Case 1 17.24 Bar 121 C 17.24 Bar 121 C 0 4.5C 

Case 2 17.24 Bar 121 C 0 4.5 C 17.24 Bar 4.5C 

In this example there are only two operating conditions therefore the range can be obtained using a load case 

combination. Load Case Combination 10 subtracts Case 2 from Case 1 to obtain the range between the two 

cases. 

Reference Solution: ASME B31.3 – 2010, Appendix S, Example 3 S301.  

The refence solution values are shown in parentheses (averaged from commercial programs). 

Branch - Axial Force Range  = 161.54kN (156.97); Moment Range = 93.34kNm (91.8). 

The reference solution has slightly lower value indications are more flexible arrangement. B31.3 does state 

that a variation can be expected depending on the stiffness parameters used. If a unity value was used for the 

valve stiffness factor the force and moment would reduce to 151.4kN and 78.16kNm.  
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Example 1.7 Cantilever Beam –  Shear Deflection  

Model: ShearBeam 

In this example a deep cantilevered I beam  is 

subjected to a tip. The resulting deflection is due to 

flexural deflection and shear deflection.  

Unless the beam is deep the contribution from shear is 

generally small and is often neglected in hand 

calculations. 

The contribution from shear is a function L/D for a 

specific section i.e. the slenderness. 

The beam formulations in FS2000 include shear stiffness and therefore when comparing solution that don’t a 

difference may be identified. In this example the deflection contributions are identified. 

Reference Solution: S. Timoshenko, Strength of Material, Part II, Elementary Theory and Problems, 3rd Edition, 

D. Van Nostrand Co., Inc., New York, NY, 1955, article 39. 

 

The comprises of two beam elements, one has shear deflection active and the other not. 

 

The I beam is a UB914305224. 

L = 3m 

AS = 1.447E-2 m2 

G = 78.85GPa 

W = 600kN 

Deflection due to Shear = W.L/As/G = 1.5776mm 

Deflection including shear deflections = 8.583mm 

Deflections excluding shear deflections = 7.006mm 

Contribution from shear deflections = 8.583mm - 7.006mm = 1.577mm (1.5776) 

In this section this represents 18% difference for a  L/D of 3.3. 
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Example 1.8 Curved Beam –  Bend and Beam Elements  

Model: CurvedBeam 

In this example a cantilevered curved pipe beam is subjected to vertical and horizontal tip loading in the plane 

of curvature and normal to the plane of the curvature respectively.  

Bend radius: 1m;  Pipe OD; 100mm;  Pipe wall:5mm 

E = 203.4GPa ; Poisson’s Ratio = 0.3;G=78.23GPa 

Tip Load = 1 kN. A case with 10 Bar internal pressure is also analysed. 

The model contains 3 bends formed from: 

     One Type 3 Bend Element 

     Four Type 3 Bend Elements 

     Four Type 0 Straight Beam Elements 

 

Reference Solution: S. Timoshenko, Strength of Material, Part II, Elementary Theory and Problems, 3rd Edition, 

D. Van Nostrand Co., Inc., New York, NY, 1955, article 80 & 85. To make the FS2000 solutions compatible with 

the slender theory solutions the shear displacements are excluded (Shear area =0). 

Case 1 In-plane Vertical 1 Bend Elem 4 Bend Elems 4 Beam Elems 

Vertical Displacement mm 2.290*(2.290) 2.290 2.218 

Horizontal Displacement mm 1.455 1.455 1.445 

*With shear displacements included 2.304 

Case 2 Out of plane Horizontal 1 Bend Elem 4 Bend Elems 4 Beam Elems 

Horizontal Displacement mm 3.636 (3.636) 3.636 3.543 

 To be expected the bend element give identical results. The segmented bend formed by 4 straight elements 

gives very similar results but slightly stiffer. 

The overlaid bending moment plots are identical for the 3 bend 

configurations. 

 

The shear force plots show how the segmented bend configuration 

approximates the shear and axial effects. More segments would 

improve the accuracy.  

 

  

   

 

 

 

The batch file also incudes the same cases but using a non-linear time history solution. 
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Example 1.9 Cantilever –  Beam & Shell Elements with Offsets  

Model: PlateBeams 

In this example a T section cantilever is modelled using four distinct techniques. 

1. Conventional Beam Elements. 

2. Shell elements with offset beams. 

3. Offset shell element with beams. 

4. All shell elements. 

The use of offsets is commonly used to stiffen 

beam assemblies. 

 

 

The T section has the following properties: Depth:60mm; Width:200mm; Thickness:10mm: Length:2m 

E = 205GPa; Poisson’s Ratio = 0.3. The tip load on the cantilever is 1kN. 

The beam sections used in the offset configurations is a rectangular section 50mm deep by 10mm wide. 

This offset by 30mm, the distance between the flange and stem centroids. 

Reference Solution: Engineers Beam Bending. 

The Tee section properties were evaluate using FS2000’s 

property generator. 

I = 4.808E-7m4 ; Z = 9.8129E-6m3; Shear Area = 6E-4m2 

Tip Displacement = Wl3/3EI = 27.055mm 

Bending Stress (stem) = W.l/Z = 203.8MPa 

Shear Stress = 1.66MPa 

 

 

 

 

 

 

 

 

*Bending + Axial Stress 

  

 Theory Beam Shell – Offset Beam Offset Shell - Beam Shell 

Deflection mm 27.06 27.1 27.29 27.29 26.97 

Stem Stress MPa 203.8 203.8 231.8* 231.8* 196.8 

Flange Stress MPa 45.83 45.76 51.34 51.34 46.68 



FS2000 Analysis  

      Verification Examples Page  12 

Example 1.10 Plane Truss –  Thermal Expansion –  Beam Elements  

Model: PlaneTruss 

The is an example of a simple 2-D truss in which one member is 1mm too short but is forced into place. The 

solution to the problem is to use thermal strain simulate the member being too short. 

 

  

The frame is 4m high and 3m wide. 

P1 members have a csa = 500mm2 

P2 members have a csa = 1000mm2 

The member between N2 to N3  which is 5m long is 1mm too short. 

E = 200GPa 

Coefficient of Thermal Expansion = 1E-5 

 

Reference Solution: Structural Analysis, RC Coates, MG Coutie, FG Kong, Second Edition 1980. 

The model uses Type0 beam elements. To ensure the frame behaves as a truss the I values have been defined 

with a very low value (1E-12). More convenient than defining moment releases. 

Temperature Difference applied to member = ε / α = 1E-3/5 / 1E-5 = 20C 

The forces shown below agree exactly to those quoted in the reference solution. 
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Example 1.11 3-D Portal Frame Settlement –  Prescribed Displacement –  Beam Elements  

Model: FrameSettlement 

The is an example of a simple 3-D portal in which column member sinks by 0.5 inches. There are no other loads 

on the frame. The model is US units. 

 

 

A = 10ins2; Ix = Iy = 300ins4; Ix = 10ins4 

E = 29000ksi; μ = 0.3 

Mid column settlement (N5) = 0.5” 

 

All degrees of freedom at the column bases are are fixed.  

Load Case defines a vertical downward displacement of -.5” at N4. No other loads are applied 

The solution used the 3-D Standard Solver. This solver does allow displacements to be define in restrained 

freedoms. Note that the non-linear solver do not allow this. 

Reference Solution: A STAAD model. 

 

Note: kip-ins for moments 

 

 

 

Elem  Node              Fx         Fy          Fz         Mx         My        Mz        Mryz 

                       kip        kip         kip        kip-ft     kip-ft    kip-ft    kip-ff 

1      1               -0.97       0.08      -0.15       0.04       1.60      -8.92       9.06 

       2               -0.97       0.08      -0.15       0.04       0.05      -9.72       9.72 

2      2               -0.08      -0.97      -0.15      -0.05       0.04      -9.72       9.72 

       3               -0.08      -0.97      -0.15      -0.05      -3.06       9.74      10.20 

3      4                1.95       0.07       0.07       0.00       8.93      -8.93      12.63 

       3                1.95       0.07       0.07       0.00       9.68      -9.68      13.69 

4      3               -0.08       0.97       0.15       0.05      -3.06       9.74      10.20 

       5               -0.08       0.97       0.15       0.05       0.04      -9.72       9.72 

5      6               -0.97      -0.15       0.08      -0.04       8.92      -1.60       9.06 

       5               -0.97      -0.15       0.08      -0.04       9.72      -0.05       9.72 
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Example 1.12  Stresses in Thick Cylinders –  Axisymmetric Elements with Contact  

Model: CylinderContact 

The is an example of a pressurised 2-part composite thick cylinder. A built-up cylinder with a radial 

interference is subjected to an internal pressure. 

The assembly is modelled using Type40 2-D axisymmetric elements. The interface between the two cylinders 

uses contact elements – Type 12 Couple elements. Thermal strain was used to create the interference strain. 

a = 4” 

b = 6” 

c = 8” 

Interference = 0.005” 

(137.25F) 

 

Reference Solution: S. Timoshenko, Strength of Material, Part II, Advanced Theory and Problems, 3rd Edition, 

D. Van Nostrand Co., Inc., New York, NY, 1956, pg. 211, problem 1 and pg. 213, article 41. 

LHS – No radial interference. 

Hoop Stress = 49.827ksi 

RHS – With radial interference. 

Hoop Stress = 42.192ksi 

 

 

 

 

 

 

 

 

 

 

The interference fit decreases the hoop stress from 49.827ksi (50) to 42.192ksi (42). 

The slight difference to the reference solution is due in most part to the linear extrapolation of the stresses 

from the Gauss point to the nodes.  
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Example 1.13 Tensile Plate with a Hole  –  2-D Plane Stress Elements  

Model: Plate_Hole 

The is an example of a flat plate with a hole. The objective is to establish the SCF at the hole and the linearised 

stresses at the critical section. The model uses 8 Node Type 30 2-D plane stress elements.  

 F = 2000kN 

w = 400mm 

t = 50mm 

d = 70mm 

Reference Solution: Roark 

Nominal Stress = F/w.t = 100MPa 

The refence solution values are shown in parentheses. 

 

 

Maximum Stress = 323.7 MPa (310) 

Kt  = 3.24 (3.1) 

 

If the size of the plate is increases to 800mm 

the SCF becomes 3.03 (the exact value for a 

hole in an infinite plate is 3.0) 
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Example 1.14  Simply Supported Plate  –  Shell Elements  

Model: SSPlate 

The is an example of a simply square support flat plate subjected to out of plane uniform Pressure. The 

objective is to establish the displacement and the maximum bending stress in the plate. 

Because the model and the loadings are symmetrical only a ¼ of the plate is modelled.  The model uses a 10 x 

10 – 4Node element mesh. Two solutions are undertaken, a thin plate solution using Type50 shells (Kichhoff 

theory) and a thick plate solution Type 52 shell (Mindlin theory). Note the next example uses 3-D elements to 

model the same plate. 

Length = Width = 1m   Thickness = 100mm 

E = 205GPa; Poiss = 0.3 
 

UDL = 1000 kN/m2 
 

Reference Solution: Roark(thin shell) & ANSYS(thick shell-SHELL43) 

 

Thin wall solution 0.216 (.2166) 

Thick wall solution 0.246mm ( 0.244) 

 

 

 

Thin wall solution 28.8MPa (28.740) 

Thick wall solution 30.53MPa ( 30.39)  

 

 

Thin plate Von-Mises 33.4MPa (n/a))   Thick plate Von-Mises 30.3(MPa (30.39) 

The twisting moment (Sxy Shear) is a maximum at the corner in the Kirchhoff thin plate theory. 
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Example 1.15 Simply Supported Plate –  3-D Solid (Type70) Elements 

Model: SSPlateBrick 

The is an example of a simply square support flat plate subjected to out of plane uniform Pressure. The 

objective is to establish the displacement and the maximum bending stress in the plate. 

It is the same scenario as that of the previous example which used shell elements. This model was formed by 

extruding the shell in the y direction to give a depth (thickness) of 100mm. The model has 20 x 20 x 4 mesh of 

Type 70 elements. As with the previous example ¼ model symmetry utilised. 

 

Refence Solution: Previous thick shell example. 

 

 

Deflection 0.243mm (0.246) 

 

 

 

Bending Stress 30.5MPa (30.3)                                                              Von-Mises Stress 30.6 MPa (30.3)  
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Example 1.16 Flat Ring - Linear Shell Elements  

Model: Flat_Ring 

The is an example of a flat circular ring subjection subjected to out of plane loading. The model uses Type 50 

shell elements.  

Reference solution: Roark 

 

OD = 2m 

ID = 1m 

t = 20mm 

E = 205GPA 

Poisson Ratio = 0.3 

 

 

    

 Case 10  100 kN applied as a line load at the inner edge.  Outer edge pinned. 

Case 11 100 kN/m2 applied as a UDL. Outer edge pinned. 

Case 12 !00 kN applied as a line load at the inner edge. Outer edge fixed. 

Case 13 100kN applied as a UDL. Outer edge fixed. 

 

The refence solution values are shown in parentheses. 

Case Max Deflection  Inner σt MPa  Outer σr MPa 

10 40.89 (40.97) 371.3 (370.3) 0 

11 41.43 (41.54) 358.9 (360.6) 0 

12 4.911(4.937) 69.7 (67.39) 115.8 (118.3) 

13 3.540 (3.529) 41.3 (40.65) 124.0 (120.0) 

 

 

 

No Radial Curvature                                                 Radial Curvature at outer edge 
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Example 1.17 Flat Ring - Linear Shell Elements  

Model: Flat_Ring-Solid 

The is an example of a flat circular ring subjection subjected to out of plane loading. The model uses 8 Node 

Type 40 axisymetric solid elements. The flat ring and loading are identical to that of the previous shell element 

example. 

Reference solution: Roark 

OD = 2m; ID = 1m; t = 20mm; E = 205GPA; Poisson Ratio = 0.3. 

 

 

    

 Case 10  100 kN applied as a line load at the inner edge.  Outer edge pinned. 

Case 11 100 kN/m2 applied as a UDL. Outer edge pinned. 

Case 12 !00 kN applied as a line load at the inner edge. Outer edge fixed. 

Case 13 100kN applied as a UDL. Outer edge fixed. The refence solution values are 

shown in parentheses. 

Case Max Deflection  Inner σt MPa  Outer σr MPa 

10 40.96 (40.97) 370.0 (370.3) 0 

11 41.54(41.54) 360.3 (360.6) 0 

12 4.918(4.937) 67.2 (67.39) 113.8 (118.3) 

13 3.540 (3.529) 40.5 (40.65) 120.1 (120.0) 

 

Case 10  No significant radial curvature 

Case 12 Radial curvature at outer edge 
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Example 1.18 Torsion of a Square Box Beam - Linear Shell Elements/Beam Elements  

Model: BoxBeam 

The is an example of a thin-walled box beam being subjected to torsional moment.  The objective is to 

establish the shear stress and the angle of twist. The model uses Type 50(0) shell elements and Type0 beam 

elements 

The model has two sections, The RHS is modelled used shell elements and the LHS is modelled using one beam 

element. The centre of the section is fixed, and the torsion moments are applied at the free ends. 

Length = 1m; Width (Height) = 150mm; t =T= 3mm; E = 205GPa; Poisson Ratio = 0.3: G = 78.85GPa.  

Applied Torque = 3kNm 

Reference solution: Roark 

Twist = T.L / (J.G) = 0.00599 Rads 

Shear Stress = T / Zt = 23.14 MPa 

 

 

The shell mid plane is at the mean wall i.e. the shell box is 147mm sq. 

 

Mid Plane Shear Stress 

22.7MPa (23.14) 

End Twist 

0.00588 Rads (.00599) 

 

 

The beam torsional properties are based on the reference properties. 

 

 

Torsional Beam Stress 

23.13MPa (23.14) 

End Twist 

0.00599 Rads ((.00599) 
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Example 1.19 Bending of a Solid Beam - Linear Solid Hex/Beam Element with Offset  

Model: SolidBeam 

The is an example of a solid square sectioned beam being subjected to an end load shear load.  The objective is 

to establish the stresses stress and the tip deflection. The model uses Type 70 brick elements and Type0 beam 

elements. The model also includes Beam offsets. 

The model has two sections, The RHS is modelled using solid elements and the LHS is modelled using one 

beam element with the aft node offset. The centre of the section is fixed, and the shear loads are applied at 

the free ends. 

Length = 500mmm 

Width (Height) = 100mm 

E = 205GPa.  

I = BD3/12 =  8.3333E-6m4 

W = 4kN 

Reference solution: Engineers Bending Theory  - Deflection =WL3/3EI 

The refence solution values are shown in parentheses. 

 

Deflection Solid Elements 

 0.971mm (0.976) 

Deflection Beam Element 

(includes shear deflection) 

1.009mm (0.976) 

Deflection Beam Element 

(excluding shear deflection) 

0.976mm (0.976) 

 

Solid Element Stress 

  Bending(Nodal Ave)  117MPa 

  Shear 4MPa (W/csa) 

Beam Element Stress 

  Bending 120MPa (120) 

  Shear 5.3MPa*(W/0.75A) 

*Be default the shear area for solid rectangular beam sections is taken as 0.75BD. 

The mesh density of the solid mesh is far too coarse to capture other that the basic bending which 

nevertheless is excellent for this type of element when they are square hexagonal. 
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Example 1.20 Beam on an Elastic Foundation –  Linear Beam/Linear Springs  

Model: BeamWinkler 

This is an example of beam supported on an elastic foundation (Winkler Foundation).  The objective is to 

establish the stresses in the beam and the tip deflection. The model uses discrete linear springs to represent 

the continuous foundation support i.e. a lumped approach.  

Semi- infinite beam. 

I = 7.2E-3 m4 

E = 21.7 GN.m2 

k = Foundation Modulus = 4000kN/m/m 

P = 100 kN M = 100 kNm 

Reference Solution: Roark 

The solution of a beam on an elastic foundation is periodic and the wavelength Lw = 2π/β where β = (k/4EI)0.25 

This is a useful parameter when discretising the beam. A minimum element length of L/24 will provide a 

reasonable solution. If loading is concentrated as in this example a smaller element length may be more 

suitable in the vicinity of the loading. The length of the model need not be any longer than 6/β to represent an 

infinite length foundation.  

For this model β = 0.2828 and L = 22.214m 

Using these parameters as guidance the element length will be 0.45 (approx. Lw/48) and length of the model 

21.6m. The model will be extended to 30m for demonstration purposes. 

The stiffness of the foundation spring = 1.8E6 N/m. 

The refence solution values are shown in parentheses. 

Case  End Displacement mm Max Shear Force kN Max Moment kNm 

1   P + M 10.08 (18.14) 83.72 184.3 

2   P 14.11 (14.14) 87.3 (100) f(ele len) 113.1 (114) 

3   M 3.97 (4.00) 18.14 (18.24) 100(100) 

 

Moment Distribution for Case 1   Shear Distribution for Case 1 

 

Moment Distribution for Case 2 - Shear Only                          Shear Distribution for Case 3 - Moment Only 
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Example 1.21 Plate on an Elastic Foundation –  Shell Elements  

Model: PlateWinkler 

This is an example of square plate supported on an elastic foundation (Winkler) Foundation. A weightless plate 
has a load distributed over a small square area in the centre of the plate. 

Length = Width = 6m   Thickness = 250mm 

E = 25GPa; Poiss = 0.25 

Foundation Modulus K = 4000kN/m3 

Central UDL = 2000 kN/m2 

Loaded Area 500mm x 500mm square 

 

The plate is modelled using a 24 x 24 mesh of Type 50 Shell 

elements. 

Loadin was applied as an element face pressure on 4 central 

elements. 

Reference Solution: An ANSYS model using SHELL 63 elements which are similar to Type 50 (Kirchhoff Plate 

theory) was used. The ANSYS SHELL 63 elements were used because this element has a foundation stiffness 

capability.  

The refence solution values are shown in parentheses. 

 

Maximum Deflection 6.269mm (6.264) 

 

 

 

Maximum Von-Mises Equivalent Stress = 12.04 MPa (11.8) 

[8 Node Type 51 model 12.4MPa] 

 

 

Foundation Bearing Pressure Max = 25.1kN/m2 (n/a) 

The reference solution software does not evaluate bearing stress but it can be inferred from 

the y displacements (K*6.264)  i.e. 25.056 kN/m2 

[8 Node Type 51 model 6.386 (includes shear displacement)] 
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Example 1.22 Plate on an Elastic Foundation –  Shell Elements  

Model: PlateWinkler2 

This is an example of infinite plate supported on an elastic foundation (Winkler) Foundation. A weightless plate 
has a point load in the centre of the plate.  
 
 

Length = Width = 300ins   Thickness = iins 

E = 29ksi; Poiss = 0.3 

Foundation Modulus K = 800kips/ft3 

Central Point Load = 50Kips 

 

The plate is modelled using a 50 x 25 mesh of Type 50 Shell elements. Because of symmetry only half of the 

plate is modelled. 

Reference Solution: A SAP2000 solution using the same mesh density. 

 

 

 Deflection at centre of plate = 0.179ins 

 

 

 

 

 Max Foundation Bearing Pressure = 82.9 psi (n/a) 

800/123*0.179 = 82.87 
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Example 1.23 Plate on a Tensionless Elastic Foundation –  Shell Elements  

Model: PlateWinklerContact 

This is an example of plate supported on a tensionless elastic foundation (Winkler Foundation. The model is 
somewhat academic having very soft foundation.  The foundation stiffness has very little influence on the plate 
displacement it is effectively a monitor for the shell displacement. 

a = 10; b = 0.2; t = 0.4; E = 1E6; ν = 0 

K = 7.168 

q = 1 

The model uses 40 Type52 shell element and the 

foundation modulus K is defined as tensionless. 

Reference Solution: “Behaviour of plates under contact constraints imposed by elastic foundations”, R.A.M. 

Silviera, A.R.D. Silva<" and P.B. Gon§alves. 

Case 1 is a tensionless Winkler foundation solution.  

The maximum foundation contact stress = σ =   -7.61E-3. Max deflection = 1.03E-3 (1.03E-3*7.168 = 7.6E-3). 

The foundation contact stress is zero at the RHS. 

R*b*a3/D = σ*0.25*.2*ba3/D = 0.761/D   (Note that D is not defined other than being an elastic parameter). 

 

Case 2 is a normal Winkler foundation and indicates a tensile foundation stress of 3.3E-3. (0.461E-3*7.168=3.) 

If the modulus is increase to 7.168E3 it has a significant effect on the displacements and the displacements are 

very different – see below. 

 

 

 

 

 

 Tensionless Winker Foundation RHS-Liftoff  Std Winkler Foundation 

  



FS2000 Analysis  

      Verification Examples Page  26 

Example 2.1 AISC –  P-Delta Analysis  

Model: P-Delta_2 

 

Specifications for Structural Steel Buildings, ANSI/AISC 360-10, published by the 

American Institute of Steel Construction gives some benchmark problems to assess the 

effectiveness of software to account for the P-Δ and P-δ second order effects. 

P-Δ Effects are the effects of loads acting on the displaced locations of joints in a 

structure. 

 

 

 

 

 

 

 

 

 

 

The model is created in US units. It has one element. Because the loading produces only single 

curvature sway no mid span nodes are required. 

The model has 4 load cases to match the load cases in the example. The model is run using the 

3-D Standard Solver with the P-Delta option active. 

The results obtained compare almost exactly with those in the AISC table given above. Note 

that the Engineers Unit option is Kip-ft (Switch off to see kip-ins) 

Axial Force  0 100 150 200  

Moment  336 470.2 600.9 853.08 

Defln  0.907 1.342 1.766 2.585 
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Example 2.2 AISC –  P-Delta Analysis  

Model: P-Delta_1 

 

Specifications for Structural Steel Buildings, ANSI/AISC 360-10, published by the American 

Institute of Steel Construction gives some benchmark problems to assess the effectiveness of 

software to account for the P-Δ and P-δ second order effects. 

The P-δ Effects are the effect of loads along the deflected shape of a member between joints. 

This is a local member effect. 

 

 

 

 

 

 

The model is created in US units. It has 2 elements. Because the loading produces single 

curvature bending between supports only one mid-span load is required. 

The model has 4 load cases to match the load cases in the example. The model is run using 

the 3-D Standard Solver with the P-Delta option active. 

The results obtained compare almost exactly with those in the AISC table given above. Note 

that the Engineers Unit option is Kip-ft (Switch off to see kip-ins) 

Axial Force 0 150 300 450 

Moment  235.2 269.8 315.6 379.7  

Defln  0.201 0.230 0.268 0.321 
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Example 2.3 Beams-Large Displacement  

Model: ArchBeam 

The is an example of a circular arch subjected to a concentrated load. The model uses 40 Type 6 beams to 

represent the arch and uses a DyNoFlex solution. The loading is applied using prescribed displacements. To 

enable the load to monitored the load is applied through a Type7 couple. 

The reference solution: O C Zienkiewicz, ”The Finite Element Method, Volume 2 Solid Mechanics, Page 372. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Case 1 Displacement (1.19) just beyond snap through(P=731). 

 

 

 

 

 

 

   Case 2 Displacement (1.13) at Maximum Load (P=8.84)  
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Example 2.4 Beams-Large Displacement  

Model: SpaceBeam 

This example is a 3 leg right angles cantilever.  Two nodal loads applied at the tip. The model uses Type 6 

beams and a FS-DyNoFlex solution. 

The reference solution is from:  

National Conference on Computational Mechanics MekIT’17 B. Skallerud and H I Andersson (Eds) 

A COMPARATIVE STUDY OF BEAM ELEMENT FORMULATIONS FOR NONLINEAR ANALYSIS: COROTATIONAL VS 

GEOMETRICALLY EXACT FORMULATIONS  

 

 

 

 

 

 

 

 

                                       Result Case 1  True scale deflection 
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Example 2.5 Shell Element  1 s t  & 2nd  Order Solutions  

Model: Plate_In-Plane_Loaded 

This example is a rectangular simple supported plate subjected to normal and in-plane loading. Three solutions 

are obtained. A linear, small displacement P-Delta and a large displacement (updated geometry).  

The model uses Type 52 shell elements and a 3-D Standard solution with and without the P-Delta option 

active. The Type 50 or 53 could have been used but the Type 52 Mindlin plate was used to match the reference 

solution. Case 3 is large displacement solution using FS-DyNoFlex – considered the most accurate solution 

method. 

A SS support 8m x 6m x 50mm is subjected to an edge load of 1000kN/m and a normal face load of 10kN/m2. 

Plate material properties are: E=210GPa and PoissRatio=0.3 

A reference solution is quoted from: StruSoft Verification Examples- shown in ( ). ANSYS solution used for 
Large displacement. 
 
  Deflection Mx  My  Mxy  VonMise s 
                         Mm  kNm/m  kNm/m  kNm/m  MPa 
Case1 – Linear 35.7(35.38) 25.6(26.62) 18.0(18.05) 13.9(13.68) 62.31 
Case 2- P-Delta 55.2(54.69) 40.3(40.30) 28.4(28.50) 20.9(20.53) 92.78 
Case 3 LargeDisp 46.1(*46.1) 32.3  22.3  18.8  81.2 (*82.2) 
*ANSYS solution using Shell 181 
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Example 2.6 Portal Frame Buckling - Beam Element- Eigen Buckling 

Model: Portal_P, Portal_1, and  Portal_2 

The model uses Type 0 beam elements. The 3-D Standard solution with the P-Delta option active produces the 

necessary result case for the Eigen buckling solution. 

The model represents a 20mmSHS portal frame with L=1m.  It is subjected to vertical point loads equal to the 

column Euler buckling load. 

The model illustrates the importance of mid span node when undertaking 2nd order solutions. 

The pinned frame bucking mode has only single curvature bending for the first mode i.e. sway frame. 

accordingly mid-span nodes are not required to capture the P-Δ effects. 

The other frames are non-sway and have double curvature bending and mid-span nodes are required to 

capture the P-δ effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Model Portal_P Portal_1 Portal_2 

No mid span nodes 0.185 0.752 3.02  

1 Mid span node 0.184 0.748 2.59 

2 Mid span nodes 0.184 0.746 2.55 
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Example 2.6 Thermal Buckling - Beam Elements Eigen Buckling 

Model: ThermalBuckling 

In this example the cruciform frame is subjected to an increase in temperature. 

At what temperature does the buckle. 

The properties of each member are: 

A = 50mm2; I = 220mm4; L = 250mm; E = 70GPa 

The model uses Type6 beam elements, but Type 0 could be used for the Eigen 

solution. 

The 3-D Standard solution with the P-Delta option active produces the necessary result case for the Eigen 

buckling solution. 

Reference Solution: Structural Analysis, RC Coates, MG Coutie, FG Kong, Second Edition 1980 Page 332. 

The reference solution stated the buckling temperature to be 62C. 

Load Case 1 has a temperature of 1C applied to all elements using property definition. This is solved using the 

3-D Standard Solver with the P-Delta option active. The Eigen buckling solution give the following solution. 

 

The resulting load factor indicates an Eigen  buckling temperature 

of 62.415C. 

 

 

 

A DyNoFlex large displacements solution as also undertaken. A small arbitrary UDL was initially applied to give 

a small displacement. The temperature was then ramped up to 80C.  The following true scale deflection plot 

and time history plot of the centre rotation were obtained. Clearly showing a sharp increase in the vicinity of 

62C. 

 

 

  

 

 

 

 

  



FS2000 Analysis  

      Verification Examples Page  33 

Example 2.7 Shell element- Euler column buckling. 

Model: ShellColumn 

This example is a pinned column subjected to an axial compressive load. Two solutions are used. One is linear 

Eigen Buckling solution and the other is a Large Displacement solution using FS-DyNoFlex. The model uses 

Type 53 shell elements and a 3-D Standard solution with and without the P-Delta option active.  

The column is 5m load and has a 100mm x 10mm rectangular cross sections. The is subjected to a compressive 

load of 10kN and a 1% disturbing mid-span lateral load. Plate material properties are E=203GPa and 

PoissRatio=0.3. 

Reference Solution: The theoretical Euler buckling load Pe = π2EI/L2 = 1.35 kN. 

Case 1 Linear Buckling Modes 

  

The Eigen solution gave the first 4 buckling mode. 

     Mode    Load Factor 

  

      1   1.34956     

      2   5.40684      

      3   12.1973 

      4   21.7626    

 

Case 2 Large Displacement - DyNoFlex Solution produced the following for a load factor of 2. 

Case 3 Using prescribed displacement (top) to laterally deform the column to state . 

The plot shows the lateral displacement. Cases 2 & 3 gives similar results. 

 

 

 

Mid Span Bending Stress = 6*1E3*0.1*0.1966/0.1/0.012 = 1180 MPa 

 

A model called   BeamColumn uses Type6 beam elements for same configuration.   
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Example 2.8 AISC –  Beam Twist Flexural Buckling 

Model: ASIC_Appendix_1_CA11 

This benchmark example from AISC 360-22 demonstrates that twisting of beams under bending and axial 

action can be included. In addition to small displacement P-δ effects, a large displacement (geometry 

updating) is also required. 

The model uses Type 6 beam elements and a DyNoFlex solution with the P-Delta and Large Disp options active.  

To capture the twisting effects several mid-span 

nodes are required.  

For purely flexure P-δ effects only 2 or 3 are 

required for double curvature bending and 1 for 

single curvature bending. 

 

The table below shows the comparisons between the AISC results for their (b) configuration (Cw=0) and the 

FS2000 results. 

*** NODAL DISPLACEMENTS ***  

Node  RC             Tx        Ty         Tz         Rx         Ry        Rz 

                    ins       ins        ins        Rad        Rad       Rad 

8-G1      1        -0.009     -0.686      0.932    0.10499    0.00000    0.00000 

                              -0.694      0.967    0.1078  

8-G1      2        -0.028     -0.520      0.927    0.07830    0.00000    0.00000 

                              -0.524      0.951    0.0790 

8-G1      3        -0.040     -0.340      0.818    0.04747    0.00000    0.00000 

                              -0.342      0.833    0.04710 

8-G1      4        -0.061     -0.200      1.378    0.03551    0.00000    0.00000 

                              -0.201      1.397    0.03580 

*** ELEMENT FORCES AND MOMENTS *** 

Elem  Node  RC            Fx         Fy          Fz          Mx         My        Mz  

                          kip        kip         kip         kip-ft     kip-ft    kip-ft 

1      8-G1      1          0.00       2.49      -0.26      -0.35      20.70     198.90 

                                                                       21.5      198.80 

1      8-G1      2        -75.00       1.91      -0.28      -0.25      19.03     152.22 

                                                                       19.5      152.17 

1      8-G1      3       -125.00       1.31      -0.24      -0.15      15.79     102.93 

                                                                       16.0      102.92 

1      8-G1      4       -175.00       0.69      -0.41      -0.11      25.46      52.07 

                                                                       25.75      52.00  

 

 

This shows the 

importance of mid-span 

nodes for this type of 

solution (torsional-

lateral) especially when 

axial loading dominates. 
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Example 2.9 Plate Cantilever Flexural Buckling  

Model: PlateCant_Buckle 

The example uses Type 53 shell elements to model a plate cantilever. The cantilever becomes unstable due to 

lateral-torsional bucking. The cantilever is a steel plate 10m long with a depth and thickness of 438mm and 

40mm respectively. A point load of 10 kN is applied at the tip. 

Reference Solution: Roark. The this predicts a critical tip load of 23.3kN for a load applied at the top of the tip. 

 

 

 

 

 

Two solutions have been undertaken. A linear Eigen buckling solution and a non-linear DyNoFlex large 

displacement solution. The DyNoFlex load case included a 1% lateral disturbing load. 

    

The Eigen solution predicted a load factor of 2.413 for the first 

buckling mode. The compare to 2.33 from the reference 

solution. 

 

  

 

This plot shows the lateral displacement at the point of load 

application. The maximum load factor is 2.313.  This clearly show that 

the onset of instability is within the region predicted by the 

reference. 
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Example 2.10 Plate Buckling due to pure Shear  

Model: Shear_Plate 

The example uses Type 53 shell elements to model a SS shear panel under the action of pure shear. The panel 

becomes unstable due to shear bucking. The panel is a steel plate 1m square plate with a thickness of 2mm. 

The plate is subjected to a constant shear load applied as a uniform edge load 1kN/m. 

Reference Solution: Roark. The this predicts a critical shear stress 

of 2.384MPa. (Load Factor = 4.768) 

 

The 1 kN/m edge load produce a uniform shear stress of 0.5MPa 

 

 

Two buckling solutions have been undertaken. A linear Eigen buckling solution and a non-linear DyNoFlex large 

displacement solution. The DyNoFlex load case included a lateral disturbing load which produces a centre 

deflection of 2.27mm. 

 

The Eigen solution predicted a first mode buckling stress of 5.523*0.5 = 

2.766MPa (2.384). 

 

 

 

 

The DyNoFlex solution indicated a buckling limit if just prior 

to the reference solution’s 4.768. 

The buckling mode was similar the Eigen solution. 
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Example 3.1 Cable Supporting Hanging Loads –  P-Delta –  Large Displacement 

Model: CableLoads 

This model represents a cable carrying three vertical loads. The solution will show that in the initial position 

the cable is in equilibrium.  

Reference Solution: Vector Mech for Engineers, Beer and Johnson, Page 260, Prob 7.8 (ANSY exp). 

Result Case 1 is a P-Delta using the 3-D Standard Solver 

Results Case 3 is a P-Delta using the DyNoFlex Solver (initial strain required for first iteration). 

Both solutions give the following. 

Reactions 

Va = 5 kips Ve = 17 kips 

Ha = -17.99   He = 17.99 kips 

Tensions 

T1 = 18.67 kips 

T4 = 24.75 kips 

 

 

 

Results Cases 10 and 11 are P-Delta + Large Displacement (Geometry Updating) using a DyNoFlex static time 

history solution. 

In Result Case 10 the support at E is move 40 ft towards A.  

Reactions 

Va = 5.82 kips Ve = 16.18 kips 

Ha = -1.62              He = 1.62 kips 

Tensions 

T1 = 6.04 kips 

T4 = 16.26 kips  

 

 

In Result Case 11 the support E is moves 40 ft towards A and then back 40 ft to its original position. This results 

in the same loading as given above for Case 1 or 3. 
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Example 3.2 Cable Net Supporting Hanging Loads –  P-Delta –  Large Displacement  

Model: ParabolicNet 

This model represents a pre-tensioned cable net subjected to a series of 15.7N concentrated loads and 

establishes the displacements due to these loads. The cable net is pre-tensioned to 200N. The cable 

gravitational load is 195 N/m. E = 128.3 KN/m2, csa = 0.785 mm2. The preload and the concentrated nodal 

forces dominate.  This enables an accurate solution to be obtained using very few spar elements. 

Reference Solution: Nonlinear Analysis of Cable Structures under General Loadings, Adab, Shooshtari et al, 

Finite Elements in Analysis and Design 73 (2103) 11-19. 

The DyNoFlex solution used P-Delta and Large Displacement options (initial strain required for first iteration). 

Result Case is the Wg + Preload 

Result Case 2 is Wg + Preload + Concentrated Loads 

Result Case 10 is a post-processes combination case: Case 2 – Case 1 to give the displacement due to the point 

loads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vertical Displacement at Node 19 = 33.34mm 

Reference Solution. 

Experiment 33.6mm 

Analytical* 33.8, 34.00, 34.16 and 33.94 

*Different investigators were quoted  
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Example 3.3 Beams-Large Displacement-Tension Stiffening 

Model: TrapezeWire 

This example is a tensioned cable subjected to a concentrated mid-span load. The LHS is fixed and the RHS 

simply supported 

Length==15m; E Value =90GN ;Diameter= 10mm ;Coeff of Thermal Exp =1.1E-5 . 

Tension= 10kN  

Load in centre span 850N. 

The objective to establish the bending stress at the point of load application.  The cable proportions are such 

that the load is supported by cable tension with bending stiffness being virtually zero.  However, at the point 

of application load there will be local bending, and this could be significant with respect to cyclic loading 

(fatigue). 

The model used Tyep16 beams (P-δ effects based on stability functions). This model the require mesh 

refinement in the vicinity of the load and LHS support (mesh sensitivity checks). 

Case 3 used the 3-D Standard with P-Delta active and cable tension by force definition. 

Case 7 used the 3-D Standard with P-Delta active and cable tension by thermal strain definition. 

Case 100 used the 3-D Non-linear with P-Delta active and cable tension by force definition. 

 

Reference Solution. The bending stress in a fixed ended cable at an angle ϑ and with tension F, can be 
evaluated using the following expression (French Stay Cable Standard).    
 
Stress = ϑ.r(E.F/I)**0.5 = 287.73MPa (ϑ obtained from simple statics  or model ϑ = W/2F) 
 

 

 

 

 

 

 

 

Bending Stress at load point = 

287.3 MPa 

 

 

Case 7 uses DyNoFlex (Large Disp +PD) Cable tension due to deflected shape. Tension less, deflection higher 

and bending stress higher (Bending Stress 311MPa) – considered more exact. 
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Example 3.4 Beam Lift using a Pulley Element  –  Dynamic - P-Delta –  Large Displacement. 

Model: Pulley_BeamLift 

This solution traces the displacement of a 10m 

I beam, pinned at one (N1) end and supported 

near mid span using an arrangement with a 

running pulley. 

The pulley is located at N9. 

The only load is a 100 kN applied at the free 

end of the beam. 

A vertical prescribed displacement applied at 

N10 moves the moves the pulley vertically 

downward by 10m. 

Reference Solution: Validated using Statics (Linear Static solution based on final configuration)). 

A pulley by its nature is a mechanism and requires a dynamic solution to establish an equilibrium state. 

Accordingly, the solution uses a DyNoFlex dynamic time history solution.  

Result Case 2 is the initial state when the 100 kN is applied and the N10 is in its initial position. 

Result Case 100 is the final state after N10 is moved vertically downward 10m. 

 

This final state displacement plot shows the relative 

movement of the pulley. 

The initial and final tensions in the pulley bridle are 

106.63kN and 84.33 kN. 

 The initial and final tensions in the pulley lifting cable 

are 172.15kN and 143.71 kN. 

 

 

The deformed geometry from the final 

state was used to create a linear model 

(Pully_Beam_Check.MOD). This gave the 

following tensions. 

Pulley lifting cable tension 143.64kN. 

Average pulley bridle tension 84.43 kN. 
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Example 4.1 Plastic Collapse of a  Two Storey Frame –  Frame Plasticity  

Model: PL_Frame_1 

The plastic collapse of this is based on the theory of “Perfect Plasticity”. With perfect plasticity the frame 

member nodal joints behave elastically at moment load levels below the plastic moment limit. Above this limit 

the member moment remains constant at that limit and the excess moment is either distributed to connected 

elements, if possible or the collapse occurs. In FS2000 this called Frame Plasticity. 

This model is a based on Example 14.7-2 from the book Structural Analysis (2nd Ed), Coates, Coutie & Kong. In 

the book a load factor of 2 is found to produce plastic collapse of the structure. 

 

Plastic Moment Limit = 67.29 kNm  

The model has a batch file that will run 8 Combination Cases using the 3-D 

Non-Linear Solver with LF = 1 to 2(1.99). 

 

 

 

 The sequence of the formation of the plastic hinges is 

indicated. When the 5th hinge is formed the frame will 

collapse. 

Note that plastic interaction is not active.  If it were, the 

presence of axial load would reduce the moment 

capacity.  In this example Hinge 1 would reduce to 66, 

only very slightly. 

 

 

 

 

This displacement plot obtained from a DyNoFlex solution shows the 
horizontal displacement of the frame as the loading is stepped up to the 
collapse loads.  

4 Hinges are shown and when the 5 is formed a mechanism is formed and the 

solution fails. 
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Example 4.2 Plastic Collapse of a  Four Storey Frame –  Elastic-Plastic –  Large Displacement  

Model: PL_Frame_2 

The plastic collapse of this is based on the theory of “Perfect Plasticity” combined with a large displacement 

solution. 

Reference Solution: Large Deformation Analysis of Elastic-Plastic Frames, Aslam Kassimali, Journal of Structural 

Engineering, Vol 109 , No 8, 1983, ASCE. 

 

FS2000 Limiting Conditions 

Case r    Forces   Lat-Deflection 

      Tons ins 

1-0  24.3 n/a 

10-0.1 22.4 3.66 

11-0.24 20(20.1) 8.54(9.26) 

12-0.5 14.4 9.05 

 

 

 

 

 

 

 

 

. 

 

 

 

 

Von-Mises plots indicate the location of the 

plastic hinges. 

 

 

r = 0.1           r = 0.24        r = 0.5 
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Example 4.3 Dynamic Response of Plastic Beam –  Dynamic - Frame Plasticity  

Model: DynPlastBeam 

A simply supported undamped beam is subjected to a 

suddenly applied load of 30 kips.   

The beam mass is represented by a concentrated weight 

of 10 kips located to the load point. 

 

Beam Properties: E=30E3ksi; YST = 30ksi; I = 854.5ins4 ; Depth=18ins;ZP = 90.6ins3. 

The onset of perfect plasticity occurs a deflection of 0.5432ins due to a load of 45.3kips. 

Reference Solution: J. M. Biggs, Introduction to Structural Dynamics, McGraw-Hill Book Co., Inc., New York, NY, 

1964, pg. 69, article 2.7. 

Note that this model cannot be run under load control because the model becomes a mechanism when the 

plastic hinge is formed (kx=0). In a dynamic solution the mass provides stability (ma + kx = 0) 

 

 

 Displacements  

  

 

At t =0 .371 u = 0.534 (0.543)  Reference solution shown in parentheses. 

At t = 0.669 u = 0.808 (0.806) 

At t = 0.122 u = 0.439 (0.338) 

Moments 

 

Linear Solution MMAX  = 3600 kip-ins 

DAF = 2 for a suddenly applied load on an elastic 

beam, MSTAT 1800 kip-ins 

 

 

Plastic Solution MMAX = 2718 kip-ins (MP) 
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Example 4.4 Dynamis Response of Plastic Pipe –  Dynamic –  Strain Plasticity  

Model: DynPlastPipe 

This is essentially the same as the previous beam 

example, but the plasticity is based on a defined bi-

linear stress-strain curve.  

A simply supported undamped beam is subjected to 

a suddenly applied load of 30 kips.  The beam mass 

is represented by a concentrated weight of 10 kips 

located to the load point. 

Beam Properties: E=40.2E3ksi; YST = 30ksi; I = 630.7ins4; OD=18ins; t=.289ins; ZP = 90.6ins3. Note the E value 

was adjusted to give the same EI value as the previous beam example. 

The onset of perfect plasticity occurs a deflection of 0.5432ins due to a load of 45.3kips. This equates a strain 

of 0.0745% at 30ksi. A Von-mises yield function is assumed. 

 

 

At t = 0.66  u = 0.7807 (0.806). This slightly less than the frame 

plasticity solution but can be expected because the frame 

solution assumes a concentrated hinge point. 

 

Reference solution shown in parentheses. 

At t =0 .371 u = 0.521 (0.543) 

At t = 0.669 u = 0.781 (0.806) 

At t = 0.122 u = 0.4392(0.338 

 

 

 

 

Plastic Solution MMAX = 2718 kip-ins (MP) 

The spread of plasticity across the section as the load reached 

the plasticity limit can also be observed in the moment plot. 
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Example 4.5 Pipe Cantilever Bending –Strain Plasticity  

Model: PlastPipeMoment 

The model represents a cantilever, 22m long, subjected to a vertical load at the tip (Type6(7) beam).  The load 

on the tip is gradually increased until the section becomes fully plastic, just above Mp. The loading is then 

removed leaving the cantilever permanently deformed and a residual stress state. Material strain hardening is 

present to prevent a mechanism being formed. A DyNoFlex (Material + Large Displacement) solution 

employed. Note that the plots values are indicative of the shape not his solution. 

Beam Properties: E=207GPa; YST = 448MPa; OD=323.9mm; t=24.3mm; ZP = 2.186E-3m3; MP=979.3kNm.Stress-

Strain Curve: Ramberg-Osgood AlphaR=1.31 N=25.61. A Von-mises yield function is used. 

Condition 1  FEQ = 1.1Mp    Tip Vertical Load = 44.51kN based 22m offset 

Section Plastic at all stress points.  Max Stress 484.38MPa; Max Axial Strain 2.3108%. Plastic Axial Strain 

2.076% Deflections Y=4.972m X=0.631 (Elastic 2.955m at Mp). 

M = 1046.47kNm  [ (22-.631)*1.1*44.51kN=1046.25kNm ] 

 

 

 

 

Condition 2  F = 0 and permanently deformed.  

Max Residual Stress 167.3MPa; Outer Residual Stress 126.5MPa; Outer Residual Axial Strain 2.015%.  

Moment= 0  Tip Y Deflection 1.864m (Elastic 0m) 

 

 

 

 

 

 

FS2000’s Moment-Curvature Utility can be used to evaluate stress strain histories (evaluation based only on 

static equilibrium using defined curvature). The results obtained below show excellent agreement with those 

from the above DyNoFlex solutions. 

Condition 1 -  Indicates a Stress of 485.57MPa for a strain of 2.31%. This occurs at a curvature of 0.1544 (strain 

= C.rM =0.1544*0.1498=2.31% ). The moment is 1047.6kNm.  

Condition 2 - A -ve curvature change of .01544 results in near zero moment 18kNm. This predicts an outer 

stress of 137 MPa and a corresponding strain of 2.012%. 

The curvature at the two conditions can also be estimated from nodal displacements using the ETABLE routine 

which uses a quadratic curve fit interpolation near the support. A plot of ETable 3 for the two cases indicates 

reasonable agreement. 
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Example 4.6 Elasto-Plastic Analysis of an axially load bar.  

Model: PlasticRod 

The model shows the non-linear material response of a bar subjected to a cyclic end load. The model uses a 

single Type 15 spar element. The loading in the element is due to prescribed end displacements. 

Reference Solution: Trivial – Loading traces stress-strain curve. 

 

Geometric Properties: Length 10mm, CSA = 1mm2 

Material Properties: Bi-linear stress/strain curve. E = 

1E11 N/m2, Ep = E/5, Yield = 400MPa 

The model has two solutions one uses a kinematic 

memory model (GeomType22) and one uses an isotropic 

memory model (GeomType24). 

 

The solution uses a DyNoFlex time history solution to produce the following incremental plastic response 

curves. 

   End Displacement History   

  Axial Stress History (Kinematic) 

      Kinematic Response      Isotropic Response 

The following were obtained using 3-D Nonlinear at specific load points. 

Point  1  2  3  4  5 

Strain (x10E5) 1.4  -0.8  1.4  -0.8  0 

Stress (Kin) MPa 600  -480  600  -480  320 

Stress (Iso)  Mpa 600  -800  920  -992  -192 
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Example 4.7 Elasto-Plastic Analysis of Pressurised Pipe.  

Model: PipePressureAxial 

This model demonstrates axial and hoop interactions during axial load cycling above the VM plastic limits. 

Reference Solution: See next example – 3-D solid element subject to same loading. 

The model comprises of a single pipe element Type6(7). For each loading history the pressure is held constant 

(+ve or -ve), and the axial load is cycled.  The pipe (400mmOD, 5mmWall 10m long) material is Yield=448MPa, 

E=207GPa, Ep=0.56GPa. The cyclic material model of a Type6(7) element is a bi-linear kinematic memory 

model. 

A pressure of 51.25Bar induces a hoop stress of 205MPa and an end cap stress of 98.67MPa. An axial force of 

3.598MN induces an axial stress of 580MPa. 

The batch file will run one complete reversed cycle for each of the loading (Time steps 1 to5).   

The table below list the conditions at the end of Time Step 2. 

Case No Hoop Stress MPa 
(52.25Bar) 

Axial Stress MPa 
(Load=3.598MN) 

Tot 
 Wall Axial 
Strain % 

Acc Plastic 
Strain % 

True Wall Axial 
Stress MPa 

101 +205 +580 +27.298 28.12 +678.4 

102 0 +580 +23.772* 23.492 +580.0 

103 +205 -580 -28.947 29.91 -481.04 

104 -205 +580 +28.947 29.91 +481.04 

105 -205 -580 -27.298 28.122 -678.4 

* Eff Plastic Strain = TotStrain – EffStress/E = 23.772 - 580/207E3*100 = 23.492% 

 

 

This plot shows the true wall axial stress-strain cycle for Cases 

101, 102 and 104. 

For Case 102 The permanent plastic axial displacement is 

2.351(23.49%). The corresponding hoop and radial strain 

would each be 0.5*23.349% = 11.75%. 

  

 

This shows the time history for Case 101 

At the end of the cycle: 

Axial stress = hoop end cap = 98.73(98.8)MPa 

Displacement = 2.859m 

Acc Plastic Strain = 58.00% 

Total Strain=28.87% 
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Example 4.8 Elasto-Plastic Analysis of 3-D Solid  

Model: PipePressure3D 

This model demonstrates 3-D plastic interactions of a Type 70 Solid element. The model a single 1m square 

brick element. The model is loading using the same loading as the previous plastic pipe example. 

The X axis represents the pipe axial direction.     Pressure Endcap Stress = 98.67MPa 

                                                                                       Applied Axial Stress = 580Mpa 

The Y axis represents the pipe hoop direct.         Pressure Hoop Stress = 205MPa  

The Z axis represents the radial pipe direction     Zero – Plane Strain Condition 

The model comprises of a single square brick element Type70. For each loading history the pressure is held 

constant (+ve or -ve), and the axial load is cycled.  The material is 448MPa, E=207GPa, Ep=0.56GPa. The cyclic 

material model of a Type70 element is an isotropic memory model. 

The table below list the conditions at the end of Time Step 2. Note that this is an isotropic memory model 

therefore cycling beyond this point will produce a different response to that of a kinematic pipe especially at 

these high strain levels with this tangent modulus. 

Case No Hoop Stress MPa 
(52.25Bar) 

Axial Stress MPa 
(Load=5.598MN) 

Axial Strain % Acc Plastic 
Strain % 

True Wall Axial 
Stress MPa 

101 +205 +580 +26.6 27.86 +678.7 

102 0 +580 +23.77* 23.49 +580 

103 +205 -580 -27.56 29.00 -481.3 

104 -205 +580 +27.56 29.00 +481.3 

105 -205 -580 -26.6 27.86 -678.7 

* Eff Plastic Strain = TotStrain – EffStress/E = 23.77  - 580/207E3*100 = 23.49% 

The above strains are obtained form the ST files produced in batch by ETABLE 

Shown below are the displacement plots for different load conditions at Time Step 2. The displacements are 

predominately due to plastic flow. For Case 102 ΔX=23.77, ΔY=11.83 & ΔZ=11.83. This corresponds to an almost 

overall effective Poisson ratio of 0.5 which is to be expected for plastic flow. If Case 102 is cycled to Time Step 

5, the load is completely removed, only the plastic strains remain and the deflections are ΔX=23.49, ΔY=11.74 & 

ΔZ=11.74. 

    101              102  103       104                105 

The Res Plastic Strain in the above table compare favourably with those for the Type6(7) pipe considering the 

pipe plastic formulation has only one independent variable (x) whereas the solid element has three independent 

variables (x, y & z). 
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Example 4.9 Plastic Collapse of a Suspension Structure –  Elastic-Plastic-Large Displacement 

Model: SuspensionStruct 

The plastic collapse of this is based on the theory of “Perfect Plasticity” for beam action and non-linear cable 

plasticity defined by a stress-strain curve. The paper did not specify the beam yield strength but an assumed 

value of 35 ksi gave comparable results for plastic hinge formation. 

Reference Solution: Inelastic Stiffened Suspension Space Structures, Journal of the Structural Division, Proc 

ASCE, Vol 96 No ST6,1970. 

Structural Rope UTS 214 ksi 

 

 

 

Case Defln    Rope Stress  P 

                Ft            ksi            kips 

1 2.47         211         30 

2 2.60  213         27 

  

 

 

Deflection Plot for Case 1 (Curve A above)   

First Hinge for Case 1 at P= 22.5 kips  

First Hinge for Case 2 at P=20.0 kips            
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Example 4.10 Elasto-Plastic Analysis of a Thick Cylinder Under Internal Pressure  

Model: ThickCylinder 

An infinitely long thick cylinder of internal and external radii 100 mm and 200 mm respectively is subject to an 
increasing internal pressure. Twelve Type 30-8 node 2-D plane strain elements are used. The mesh is identical 
to the reference solution (considered bit coarse). He next example uses Type 40 2-D Axisymmetric elements 
with a more refined mesh. 
Reference Solution: Owen, D.R.J., Hinton, E. Finite Elements in Plasticity: Theory and Practice 
Publisher.Pineridge Press Ltd. Swansea, U.K. 1980. ISBN 0-906674-05-2 
 
The plots below show the hoop stress as the pressure increases. 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 P = 80 MPa  P=120MPa  P = 140MPa  P = 180MPa 

The cylinder becomes fully plastic at 192 MPa.  
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Example 4.11 Elasto-Plastic Analysis of a Thick Cylinder Under Internal Pressure  

Model: ThickCylinderAxy 

This is the same as the previous example. An infinitely long thick cylinder of internal and external radii 100 mm 

and 200 mm respectively is subject to an increasing internal pressure. Type 40-8 node 2-D Axisymmetric 

elements are used. The mesh is more refined than the previous model. 

The bi-linear stress-strain curve has no strain hardening and collapse 

occurs at 192MPa. The Von-mises stress is at yield across the whole of 

the section. 

 

 

 

 

 

 

 

 

Von-Mises and Hoop stress 

at 180MPa – Case 4 

   

 

 

 

  

 

 

 

 

                 P = 80MPa      p =140 MPa  P = 192MPa (collapse) 
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Example 4.12 Thermal-Elasto-Plastic Analysis of Pressurised Pipe.  

Model: ThermalPlasticPipeBeam 

This model demonstrates thermal axial expansion and hoop stress interactions in a pipe (400mmOD, 5mmWall 

10m long) for loadings above the VM plastic limits. The pipe has an initial pressure of 75Bar and is 124.6C 

above ambient which results in the VM stress being at yield. The temperature is then increased from ambient 

to level that produce stress levels above the VM plastic limit.  

The model comprises of a single pipe element Type6(7) and represents a section of pipe between fully fixed 

anchors. Pipe material properties: Yield=448MPa; E=207GPa; Ep=0.56GPa; α =1.17E-5.  

Theory: Below yield (Roark).  Above yield, the same pipe is modelled in the next example using solid  elements. 

Hoop Stress due to pressure Sh =  Δp.Do/2t =300 MPa. 

Axial Stress due to pressure Sap = µ Δp.2r2/(R2-r2) = 86.64 MPa  

Von-Mises stress due to pressure = SQRT(Sh2 + Sa2 – Sa.Sh) = 267.4 MPa 

Axial Stress due to thermal expansion = Sat = α.ΔT.E = -301.8MPa 

True wall axial stress = Sa = Sap + Sat = -211.8 MPa 

Von-Mises stress due to pressure & expansion = SQRT(Sh2 + Sa2 – Sa.Sh) = 448.1 MPa  

At a temperature of 124.6C the pipe wall Von-Mises stress equals the material yield limit. 

Cases 1 to 3 are 3-D Standard linear solutions.  Case 100 is a DyNoFlex (C100) solution. Pressure is applied and 

then the temperature is ramped up to a value of 10 time the temperature that produces yield i.e. 1246C 

(mechanical properties are constant). Case 10 is a DyNoFlex (L10) that ramps up only the temperature.  

It should be noted that hoop strain in Type 6 beam elements is not an independent variable and accordingly it 

should never have a value greater than yield when undertaking plasticity solutions. 

The table below shows exact agreement with the above theoretical values for load levels below yield. 

Case No Press Bar Temp C Hoop Stress MPa Axial Stress MPa VM Stress MPa Acc Plast Strain 

1 75 0 300 86.63M 267.4 0 

2 0 124.6 0 -301.8 301.8 0 

3 75 124.6 300 - 215.1 448.1 0 

100 75 1246 300 -228.76 459 1.56% 

10 0 1246 0 -455.0 455.0 1.238% 

101 100 1246 400 -108.1 464 1.979% 

This plot shows the VM stress as a function of temperature.  

At t=0 the stress is that due to pressure alone 267.4MPa. 

At t=1 the point where the temperature is 1246C the VM stress reaches 

448MPa, the yield limit. Further increase in temperature produces plastic 

flow. The VM stress increases slightly due to strain hardening. If there were 

no strain hardening the VM stress would remain constant. 

* This hoop stress is evaluate using the a hoop stress based on Δp.(Do-t)/2t  

(hoop Stress option in GUI) which is also used in DyNoFlex. 
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Example 4.13 Thermal-Elasto-Plastic Analysis of Pressurised Pipe.  

Model: ThermalPlasticPipe 

This model demonstrates thermal axial expansion and hoop stress interactions in a thin wall pipe (400mmOD, 

5mmWall 10m long) for loadings above the VM plastic limits. This is the same as the previous example. The 

pipe has an initial pressure of 75Bar and is 124.6C above ambient which results in the VM stress being at yield. 

The temperature is then increased from ambient to level that produce stress levels above the VM plastic limit.  

The model comprises of a single Type 40, 8 Node Axisymmetric 2-D solid element and represents a section of 

pipe between fully fixed anchors. Pipe material properties: Yield=448MPa; E=207GPa; Ep=0.56GPa; α =1.17E-5.  

At a temperature of 124.6C the pipe wall Von-Mises stress equals the material yield limit (Case 3). 

Cases 1 to 3 are 3-D Standard linear solutions.  Case 100 is a DyNoFlex (C100) solution. Pressure is applied and 

then the temperature is ramped up to a value of 10 time the temperature that produces yield i.e. 1246C 

(mechanical properties are constant). Case 10 and 11 are DyNoFlex cases that ramps up only the temperature 

and pressure alone.  

 

Case 100 Von-Mises Stress    Case 100 Radial Deflection 

 

Case 
No 

Press 
Bar 

Temp 
C 

Hoop Stress 
MPa 

Axial Stress 
MPa 

VM Stress 
MPa 

Acc Plast 
Strain 

Defln 
Radial 

1 75 0 288.8-296.2 86.6 256.6-269.3 0 .257 

2 0 124.6 0 301.8 301.8 0 .379 

3 75 124.6 288.7-296.2 215 437.9-445.5 0 0.633 

100 75 1246 291.7-293.3 232.5-234.5 456.7-456.8 1.552-1.568 6.013 

10 0 1246 0 455 455 1.238 4.286 

11 180 0 699.7-704.3 352-359 613-618 29.4-30.3 52.39 

101 100 1246 390-391 113-114.7 459 2-2.02 7.16 

Reference Solution ANSYS (STIFF82 Axy) 

Case 
No 

Press 
Bar 

Temp 
C 

Hoop Stress 
MPa 

Axial Stress 
MPa 

VM Stress MPa Acc Plast 
Strain 

Defln 

3 75 124.6 289-296 215 438-445 0 0.633 

100 75 1246 292-293 233-235 457 1.566-1.583 6.059 

10 0 1246 0 455 455 1.238 4.286 

11 180 0 700-704 342-350 613-618 29.4-30.3 52.37 

101 100 1246 390 113-115 459 2-2.03 7.2 
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Example 4.14 Thermal-Elasto-Plastic Analysis of Pressurised Pipe.  

Model: ThermalPlasticPipePS 

This model demonstrates thermal axial expansion and hoop stress interactions in a thin wall pipe (400mmOD, 

5mmWall 10m long) for loadings above the VM plastic limits. This is the same as the previous example. The 

pipe has an initial pressure of 75Bar and is 124.6C above ambient which results in the VM stress being at yield. 

The temperature is then increased from ambient to level that produce stress levels above the VM plastic limit.  

The model comprises of Type 30, 8 Node Plain Strain 2-D solid element and represents a section of pipe 

between fully fixed anchors. ¼ symmetry is assumed. A single element width represents the wall thickness. 

Pipe material properties: Yield=448MPa; E=207GPa; Ep=0.56GPa; α =1.17E-5.  

At a temperature of 124.6C the pipe wall Von-Mises stress equals the material yield limit (Case 3). 

The results obtained are almost identical to the single axisymmetric model. 

 

 

 

 

 

 

 

 

 

Case 100 Von-Mises Stress    Case 100 Radial Deflection 

 

 

Case 
No 

Press 
Bar 

Temp 
C 

Hoop Stress 
MPa 

Axial Stress 
MPa 

VM Stress 
MPa 

Acc Plast 
Strain 

Defln 
Radial 

1 75 0 288.6-296.6 86.6 256.3-269.9 0 0.257 

2 0 124.6 0 301.8 301.8 0 0.379 

3 75 124.6 288.6-296.6 215.1 437.7-445.9 0 0.633 

100 75 1246 291.9-292.8 224.2-226 449.5-450 1.476% 6.53 

10 0 1246 0 -455.0 455.0 1.235% 5.16 

11 180  699.2-704.1 352.2-359.9 612.5-618.3 29.44-30.32 52.417 
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Example 4.15 Elasto-Plastic Collapse of a Square Beam-Shell Elements  

Model: PlasticBeam1 (PlasticBeam2) 

This model evaluates the elasto-plastic collapse of a simply supported solid square section beam subjected a 

UDL. The beam span is 1m and the section width/depth is 100mm. The total load on the beam is a UDL. The 

model uses Type 52 4-Node Shell Elements This represents a very thick shell aspect ratio. Model PlasticBeam2 

also models the same beam using Type 30 2-D Plane stress elements for the in-plane loading Cases 1 & 2.  

 

 Ideal plasticity is assumed. 

Beam Properties: E=205GPa; Poiss=0.3; YST = 300MPa.  

Reference Solution: Basic Beam Theory. 

I = bd3/12 = 8.333E-6 m4; Elast Modulus=1.6667E-4 m3 ; Plastic Mod=2.5E-4 m3  

Yield Moment=50 kNm;  Yield Load=8M/L = 400kN 

Plastic Moment = 75 kNm;  Plastic Load = 600kN.  

The plots below are for un-averaged stresses. 

Case 1 In-Plane Linear Elastic  Load Factor = 1.0 

 

Max Elastic stress at yield 

 

Case 2 In-Plane Plastic   Load Factor = 1.49 

 

Plasticity spreading through beam depth 

 

Case 3 Out of Plane Linear Elastic  Load Factor = 1.0    

 

Top Surface: Max Elastic stress at yield 

 

Case4 Out of Plane Plastic   Load Factor = 1.5   

 

Top Surface: Plasticity spreading along beam 
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Example 4.16 Elasto-Plastic Collapse of a Square Beam -2D & 3D Solids  

Model: PlasticBeam2 & PlasticBeam3  

This model evaluates the elasto-plastic collapse of a simply supported solid square section beam subjected a 

UDL. The beam span is 1m and the section width/depth is 100mm. The total load on the beam is a UDL. 

PlasticBeam2 uses Type 30 2-D Plane stress elements.  

PlasticBeam3 uses Type 70 3-D Hex elements. The aspect ratio of the hex elements is suited only for stress 

variation in the X direction (vertical load) for a non-linear plastic solution. A linear solution in the lateral 

direction (Case 3) does however give the same results as that for the vertical direction. 

This is the same as the previous example. Yield Load Limit=400kN. Plastic Load Limit(LF=1.5) = 600kN 

Both models have two load cases each applied the vertical Y direction. Case 1 is linear elastic to the yield limit 

and Case 2 is at the plastic limit. 

 

Case 1 Max X stress at 400kN = 300.9MPa 

 

 

Case2 Von-Mises at 600kN = 300MPa 

 

 

 

Case 1Max X stress at 400kN = 209.9MPa 

 

 

 

Case 2 Von-Mises at 600kN = 300MPa 

 

 

X Direction Stress from the 2-D model at mid span. 

Case 1 Linear Variation 300MPa Yield at Top & Bottom 

Case 2 Stresses at Yield thru section at Plastic Limit 
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Example 4.17 Elasto-Plastic Collapse of a K-Braced Frame 

Model: KBracedSTST 

This model assesses the elasto-plastic collapse of a K-Braced frame. The model is based on a test frame that 

was loaded to its ultimate capacity. (T. Moan et al, “Collapse Behaviour of Trusswork Steel Platforms”, 

Behaviour of Offshore Structure, 1985).  Full material details are not available in the paper but sufficient are 

given to create a similar model and undertake a solution with surprisingly good correlation. 

The beam elements used are Type 6(7).  The Geom Type 7 is a 

bi-linear stress-strain material model. The stress-strain data is 

based on E=205GPa, YST=345 MPa and UTS is 490MPa at 30% 

strain.  

This type of failure frame produces a negative effective 

stiffness matrix (mechanism formed) and cannot be solved by 

load control. The loading is applied as a prescribed 

displacement, applied through a load monitoring tension only 

couple. 

The predicted collapse of 636 kN load compared well with the 

reported results. 

An Eigen buckling solution is also undertaken.  This predicted a 

buckling load of 590 kN (0.987 LF). 

 

 

 

Note that the FS2000 plot is Force vs Time Step and not Force vs Displacement (slope sign different on 

reversal) 
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Example 4.18 Elasto-Plastic Collapse of a Deep I Beam  

Model: Plate_I_Beam 

This model investigates the elasto-plastic collapse of a simply supported symmetric I Beam subjected to a 

concentrated mid span load (598.5kN). The beam span is 4m. 

Depth=600mm: Width=180mm 

Flange=10mm: Web=8mm 

E=210GPa: Poiss=0.3; Yield=345MPa;Et=3E8 

Von-Mises yield criteria 

The beam model uses Type 52 shell elements. Half model symmetry. 

The base case loading is the section plastic moment i.e. LF=1.0 gives the 

Plastic Moment = 598.5 kNm. Elastic moment = 509.9 kNm (SF=1.174). 

Reference Solution: LT Beam & Basic Plastic Beam Theory. 

Case 1 Linear Elastic (Linear Solver) 

Maximum Flange Stress=444.3MPa (Implies a plastic shape factor of 1.29) 

Deflection=10.08mm 

 

 

Case 2 Plastic 

Solution fails at LF=1.02 due to plastic yielding. 

Max Von-Mises = 345.1 MPa -Spread across flanges outer 

web section. Perfects plasticity make full section plasticity 

difficult to achieve.  

Max Deflection (top flange) =12.9 mm Vertical 

 

Case 3 Elastic Large Displacement 

Excessive lateral deflection at LF=0.78 due to elastic lateral 

buckling. 

Max Von-Mises=345MPa  

Max Deflection:7.809mm Vertical:0.76mm Lateral  

LT Beam gives Mc=436.93kNm (LF=0.73) 

 

 

Case 4 Plastic Large Displacement 

Solution Fails at LF=0.62 due to plastic flange bending. 

Maximum Von-Mises = 346MPa  

Deflection (Top flange): 6.3mm Vertical    7.4mm Lateral 
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Example 4.19 Elasto-Plastic Soil Foundation  

Model: SoilBearing 

This model evaluates the vertical bearing capacity factors (Nc) of smooth strip foundation footing using a 

Mohr-Coulomb plasticity model. The model uses 2-D 8Node plane strain elements. To avoid numerical 

instabilities the solution employs a displacement-controlled approach.  

The bearing load is applied using prescribed displacements 

(Case 4). These are applied through Type 12 contact 

elements. The vertical restraint also uses node to ground 

contact elements. These contact elements are used solely 

for convenient load monitoring purposes. q used below is 

the couple reaction summation. 

E = 2E5 kN/m2; Poiss =0.3 Cohesion= 20 kN/m2 

To evaluate Nc the spoil is assumed to be weightless. 

Foundation width w = 1.4 

Reference Solution: “Computation of vertical bearing 

factors NC of strip footing by FEM” Phuor Ty et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 527 012017. 

This plot of load contact is for a friction angle of 15, it shows that the bearing pressure due to the prescribed 

displacement has reached a maximum.  Nc=q/c.w = 310E3/1.4/20E3 = 11.07    q=reaction summation 

The displacement vector plot shows the typical orientation of the slip planes. 

 

 

 

 

 

 

 

Table from reference solution. 

FS2000 evaluated NC factors. 

Frictionφ    NC 

5                      6.55 

15  11.07 

25  20.91 

35       46.54 

45  109.31 
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Example 5.1 Natural Frequencies of a Beam –  Beam Elements  

Model: CantileverFreq 

This example evaluates the first three natural frequencies of a solid rectangular steel beam due to self-weight. 

Two support conditions are considered. Cantilevered and fully fixed at both ends. 

50mm Square section 

I = 5.208E-7m4 

A = 2.5E-3m2 

E= 205GPa 

L = 3m 

Density = 7860kg/m3 

 

Reference Solution: “Vibration Theory and Applications”, W.T.Thomson, Prentice-Hall Inc, 1965, page 275. 

The refence solution values are shown in parentheses. 

Condition 1 Mode Rad/s 2nd Mode Rad/s 3rd Mode Rad/s 

Cantilevered 28.79 (28.8) 180.23 (183) 503.77 (505) 

Fully Fixed 182.88 (183) 505.95 (505) 983.04 (991) 

 

 

                         Cantilever Mode Shapes 

 

 

 

 

 

    

            Fully fixed Mode Shapes 
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Example 5.2 Triangular Wing Eigen Values –  Shell Elements  

Model: Triangular Wing 

The example evaluates the natural frequencies of a triangular wing. 

 

The length and width are 6 ins. Thickness = 0.034 ins. 

E =6.5E3 ksi; ν = 0.3541; ρ = 0.166E-3 lb.sec2/ins4 

The model uses Type 50 3-Node shell elements. 

The mass case is self-generated. 

 

 

Reference Solution: “ASME Pressure vessel and Piping 1972 Computer Programs Verification” ed IS Tuba and 

WB Wright, ASME Publication I-24, Problem 2. 

The refence solution values are shown in parentheses are from a COSMOS examples using quads for the same 

6.problem. 

First Mode 55.42 Hz (55.4) 

 

 

 

 

Second Mode 205.29 Hz (205.3) 

 

 

 

 

 

Third Mode 282.35 Hz (282.3) 
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Example 5.3 Period of a Pendulum  –  Dynamic –  Large Displacement. 

Model: Pendulum_Dyn_LD 

The model comprises of a single massless Type 6 beam element. The beam is hinged at the top and has 

concentrated mass at the free end. The starting position of the beam is at 90 degrees. A time history solution 

starts with mass being released from the 9 0’clock position. The time history runs for about 12 cycles. 

The natural period of a swinging pendulum is a function of both length and amplitude.  

For small amplitudes << 1 Degree this formular is often used.  

For a 1m long pendulum with amplitude of 90 degrees the small displacement solution 

is 2.006s 

For larger amplitudes this formula may be used. 

For a 1m long pendulum with amplitude of 90 degrees the large displacement 

solution is 2.368s. 

 

 

The time displacement shows a period very closely in the 

region 2.368s. 

The periodic motion is not sinusoidal. 

 

 

If the initial position is changed from 90 degrees to 5 degrees, the is following obtained. 

 

The time displacement shows a period very closely in the 

region of 2s and the motion appears sinusoidal. 

 

 

 

Eigen Frequency Solution 

Case 2 (Gravity applied in the X direction) is a small displacement Eigen solution. This gives: 

 

First Mode:Exact agreement with the 

small disp. analytical formula.  
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Example 5.4 Harmonic (Modal) Response of Two Mass Spring System  

Model: HarmonicResp1 

This model determines the dynamic response amplitudes of two masses when excited by a harmonic force. 

m1=m2=0.5 lb-sec2/ins 

k1=k2=k3=200 lb/ins 

F1= 200 lbs 

The model uses unit length beam elements to model the springs (A=1; E=200). 

The solution is obtained by first determining the natural frequencies and then undertaking a modal response 

solution. 

Reference Solution: “Vibration Theory and Applications”, W.T.Thomson, Prentice-Hall Inc, 1965, Exp 6.6-1,page 

178.  The refence solution values are shown in parentheses. 

Frequency Solution  1st mode = 3.183Hz (3.183) 2nd Mode = 5.5132 Hz(5.513  ) 

Response at specific frequencies.  

The values are shown in parentheses are from an ANSYS verification example. 

Freq Hz X1 Phase X2 Phase 

1.5 0.8227 (0.8227) 0 0.4627 (0.47274) 0 

4 0.5115 (0.51145) 180 1.215 (1.2153) 180 

6.5 0.5851 (0.58512) 180 0.2697(0.26965 0 

The response is obtained for a frequency range of 0 to 7.5 Hz as shown below. Also shown below are the 

displacement response at a frequency of 6.5 Hz and the forces in the springs at 6.5 Hz. 

 

 

 

 

 

 

 

 

The model solution also included an results case (FCASE) at 0.1168s for the 6.5Hz excitation. 

DyNoFlex Time History Solution 

A solution was also undertaken using a DyNoFlex time history solution (in Batch). This gave similar results but 

did include a small contribution from the initial transient solution during the ramping up of the sinusoidal 

force. 



FS2000 Analysis  

      Verification Examples Page  64 

Example 5 5 Transient Response of Viscous Damped System  

Model: DampedVibration 

The model evaluates the natural frequencies and response of a damped system with varying levels of damping.  

a = 3m; b = 4m 

k = 40kN/m 

m =  1 Tonnes 

The beam is massless and is relatively stiff to behave as a rigid bar. 

The model has two load cases: Case 1 is the mass case; Case 2 is a 

10kN load applies at the free end. 

 

Reference Solution:“Vibration Theory and Applications”, W.T.Thomson, Prentice-Hall Inc, 1965, Exp 13,page 

49.  From the refence solution so following table can be constructed. 

Damping % Crit 75 50 25 15 10 5 0 

CC kN-s/m 12.65 8.433 4.216 2.530 1.687 0.843 - 

Nat Freq  Rad/s 5.578 7.303 8.165 8.337 8.390 8.422 8.433 

Nat Freq s 1.126 0.860 0.695 0.754 0.749 0.746 0.745 

Case 1 Eigen frequency solution - First mode = 8.4306 Rad/s (8.433) 

Case 2 A static solution gives results in a deflection of 250mm at the load point (10E3/40E3).  

Case 10 Dynamic Solution Load Case 2 suddenly applied – Modal Response.  

Case 11 Dynamic Solution Load Case 2 suddenly applied – Incremental Time History (DyNoFlex) 

Case 10 75% Critical Damping Case 10 15% Critical Damping 

The model uses Δt=0.01, time step 

Peak for 75% Damping occurs at t=0.57s 

y=256.958mm (0.563s) 

Peak for 15% Damping occurs at t =0.39s 

y=404.955mm (0.377s) 

The theoretical reduction in the natural 

period due to increased damping agrees well 

with that from the modal response solution. 

 

Case 11 Produced almost the same response. 

The incremental solution uses a  Δt=0.01, time step 

Peak for 75% Damping occurs at t=0.57s y=257.1mm (0.563s) 

Peak for 15% Damping occurs at t=0.38s y=404.9mm (0.377s) 
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Example 5.6 Pile Driving Impact  –  Wave Propagation - Modal Response 

Model: PileImpact 

This is a model of a concrete pile subjected to a hammer blow. The hammer blow is represented by a half sine 

impulse. The model shows axial wave propagation as the stress wave moves down the pile. 

Wave propagation velocity = Vw = (E/ρ)0.5 = (3E6*386/8.681E-2) 

                                                 = 115.5E3 ins/s 

Length of half sine impulse = 115.5E3*0.005 = 577.5 ins. 

51 elements in the pile will give just over 24 elements in half wave, 

enough to capture the response. 

The pile nodes are only free in the y direction and the tip is fixed. 

Reference Solution: Clough & Penzien, Dynamics of Structures,  McGraw-Hill 1975, Example E19-5. 

The IMPULSE command is used to apply a nodal load in the Y direction at the top of the pile. 
IMPULSE,4,0.005,0,20,2,-6.000E05,2 

The time take for the pulse to move from the head to the tip =  1200/Vw = 0.01038s. Because the tip is fixed, 

the pulse will then start being reflected from the tip and become a maximum at t = 0.1038+577.5/115E3 = 

0.129s.  The tip is rigid therefore the maximum will be double the wave load in the pile to 1200 kips. The 

reflected wave will travel back up the pile with no loss of energy. 

         T = 0.005s                    t = 0.01038s                        t = 0.0129s                                       t= 0.0170 

 Wave fully in pile             Wave just reaching tip     Wave reflecting   Wave travelling back up 

599.96 kips  601.9 kips                          1197.69 kips                                   602.55 kips 

  

It is interesting to note that when the wave reaches the head which is free, the wave will be reflected as a 

tensile stress (Case 13). Similarly, if the tip support was very soft the wave would be reflected as a tensile 

stress. 

A DyNoFlex incremental solution (Case 20, t=0.0129) produces the same results at the above. 
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Example 5.7 Seismic Response (Modal Spectrum) of a Three Storey Frame.  

Model: SeismicResp_Cant 

The model undertakes the response spectrum analysis of tower type structure with an offset. The solution 

uses an Eigen solver and the Seismic Response module. 

 

E = 30E6 ksi 

I = 38.4 ins4 

L = 240 ins 

m = 322 Lbs/g 

 

 

 

Reference Solution: Clough & Penzien, Dynamics of Structures,  McGraw-Hill 1975, Example E26-5. 

The refence solution values are shown in parentheses.  

The spectral accelerations corresponding the two modes are : 8.89 and 42.15 ft/s2 respectively (obtained from 

the response spectra from the reference for 5% damping). 

 

 

 

 

 

 

 

 

 

The SRSS reactions are: 

Vertical 0.26 kips (0.26) 

Horizontal 0.57 kips (0.57) 
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Example 5.8 Seismic Response (Modal Spectrum) of a Three Storey Frame.  

Model: SeismicResp_Frame 

The model undertakes the response spectrum analysis of three storey frame represented by an equivalent 

three beam structure.  The solution uses an Eigen solver and the Seismic Response module.  

Reference Sol’n: Biggs J.M, “Introduction to Structural Dynamics! McGraw-Hill Book Co.,1964, page 266-269.  

The refence solution values are shown in parentheses (slide rule accuracy). 

 

 

 

 

 

 

 

Modal Frequencies 

Mode 1 0.997 (1.00) Hz 

Mode 2  2.179 (2.18)Hz 

Mode 3  3.176 (3.18) Hz   

 

 

 

Displacements (ins) 

Node ABS RMS 

2 2.087 (2.01) 1.526 (1.5) 

3 3.734(4.09) 3.213 (3.24) 

4 5.462 (6.78) 4.701(5.03) 

 

Node 4 ABS acceleration 352 (338) ins/s2 Node 4 RMS acceleration 231 (225) ins/s2 

  

Shear Force (kips) 

Element ABS RMS 

1 3130 (3020) 2288 (2250) 

2 2170(2080) 1784 (1740) 

3 1411 (1345) 923(895) 
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Example 5.9 Seismic Response (Modal Time History) of a 5 Storey Frame  

Model: Earthquake 

The model undertakes a time history model response analysis of a five-storey frame 

represented by an equivalent five beam structure. The model is subjected to ground 

accelerations define by a g acceleration record (ElCentro N-S). 

 

 

 

Floor Mass = 100 kips/g at all floors. 

Floor Stiffness = 31.54 kips/ins 

Column rotation at each floor is zero. Column height = 144ins 

E = 29.5E3 ksi;  Equiv I = 125.2 ins4; Damping = 5% 

Reference Solution: Chopra A. K., “Dynamic of Structures, Theory and Application to Earthquake Engineering”, 

Prentice-Hall, 1995. 

Natural Modes (Seconds): 2, 0.685, 0.435, 0.338 and 0.297. 

Maximum Top Storey Shear = 35 kips (35.217) 

Maximum Base Shear = 73 kips (73.278)  

Maximum Top Storey Displacment 6.827 (6.847) 
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Example 5.10 Beams-Dynamic Large Displacement  

Model: FixedBeam 

This example is a built-in beam subjected to a concentrated load being suddenly applied at centre span. The 

model uses 10 Type 6 beams and a FS-DyNoFlex solution. 

The reference solution is from:  
Shock and Vibration Volume 2023, Article ID 6675678, 30 pages. 

Corotational Finite Element Dynamic Analysis of Space Frames with Geometrically Nonlinear Behaviour Based on Tait–Bryan Angles 

 
 

 
 
 
 

 Result Case 1                                                                                                               Result Case 3 
 

 
                                          
 
       
 
                   
 
                         Result Case 3 (Linear – No tension stiffening) 
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Example 5.11 Response of a Moving Load on a SS Beam  

Model: Beam-MovingLoad 

The example evaluates the response of a concentrated moving load as it passes along the span of ss beam. 

history solution. 

 
 

The SS beam was modelled using 34-1m long 
Type 6 beam elements.  
 
The solution used a DyNoFlex linear time 
history and the Moving Load Generator. 
 
 

 

Reference Solution: Response Of Cable-Stayed and Suspension Bridges to Moving Vehicles, TRITA-BKN, Bulletin 44, 1998 

 
 
 

 
 
 
 
 
 
 
DAF = 1.256 
 
 
 
 
 
 
 
 

 
   Dynamic           Static 

 
 
 
 
 
 
 

DAF plot from reference solution. 
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Example 6.1 Heat Conduction across a Chimney  

Mode: Chimney 

The is a model evaluates the temperature distribution across the chimney due to conduction and convection. 

 

The chimney is 4ft square and 1ft thick. 

Flue Temperature = 100F; Extremal Temperature 0 F. 

Thermal Conductivity 1 Btu/hr-ft-F 

Internal Convection Coefficient = 12 Btu/hr-ft2-F  

External Convection Coefficient = 3 Btu/hr-ft2-F 

 

Reference Solution: ANSYS verification model VM100 

 

Taking advantage of geometry and load symmetry only an 1/8 section is 

modelled. 

 

 

 

 

 

 

 

Identical contour display as the reference solution. 

Maximum wall Temp = 93.6F (93.6) 

Minimum Wall Temp = 5.01F (5) 
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Example 6.2 Cylinder Heat Conduction and Thermal Stresses  

Model: CylinderThermal 

A thick cylinder has defined internal and external wall temperatures. The objective is to establish a stress 

distribution due to thermal stresses. A heat transfer solution establishes the temperature distribution, and a 

stress solution then establishes the stress distribution. 

OD = 500mm 

ID = 200mm 

E =205GPa; ν = 0.3; Thermal Expansion Coefficient = 1E-5 

Inside wall temperature = 100 C 

Outside wall temperature = 0 C 

Thermal conductivity = any non zero value (wall temperatures defined). 

 

The model uses Type30 plane strain elements. Only a 15 degree segment is 

modelled. Ground couple referenced to a cylindical coordinate system are  

used to provide tangential restraint. 

 

Reference Solution: S. Timoshenko, Strength of Material, Part II, Advanced Theory and Problems, 3rd Edition, 

D. Van Nostrand Co., Inc., New York, NY, 1956, pg. 232,article 44. 

Case 1 - Temperature Distribution from the Heat Transfer Solution. 

 

Case 2 - Thermal Stress Distribution from the Stress Solution  

The refence solution values are shown in parentheses. 

 

Inner Hoop = 203MPa (207) 

Outer Hoop = 116 MPa (114) 

 

Hoop stress contors from a model that used Type 40 axisymetric 

elements for a solution to the same problem ( Ver-Example FEExp11). 
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Example 7.1 Hydrodynamic Wave Loading on a Marine Riser  

Model:WaveLoad2 

This an example of an inclined riser subjected to hydrodynamic wave loading. 

Stokes 5th Order wave theory is used to evaluate wave motions.  This model is 

based on the overall proportions of that in the reference solution.  

The reference solution only evaluated the wave loading and divides the riser into 

100 elements and uses 10 subdivisions per element for wave load evaluation. To 

be more realistic the riser is divided into 14 elements. This gives an element 

length of about 7m which is a typical of a span length for a riser of this diameter. 

The riser is guided at each node using ground couple elements aligned to the riser 

axis. A deadweight support is provided just above STW. 

Riser Base: x=0; y=-70; z=0. 

Riser Top: : x=30; y=20; z=30. 

OD = 200mm; Cd = 1; Cm = 2 

STW at y=0; Depth = 70m 

H = 30m; T = 15s. 

Buoyancy effected are neglected. 

Reference Solution: USFOS, Theory Description of use Verification (no structural solution). 

The following show a comparison of loading due to drag only. 

 

 

 

 

 

 

ABS Drag Only   : Max X=292.7kN (291.5) Max Y=37kN (36.48) Max Z=93.11kN (92.9) 

ABS Inertia Only: Max X=8.6kN (8.89) Max Y=2.844kN (3.12) Max Z=3.093kN (3.44) 

 

Major axis Bending Stress and Guide Reactions 

Structural Global Reaction summaries.  

RC 10 Drag only. 

RC 11 Inertia only. 

RC 12 Drag & Inertia. 

Note that Case 10 and 11 are at different phases. 
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Example 7.2 The Lifting of a Pipeline  –  Foundation Contact  

Model: PipelineLift 

This an example of a pipeline lift in which a single point lift is used to raise the end of a pipe a specific height 

and maintain a zero slope at the end.  The model use Type 7 beam elements.  These elements are supported 

on a distributed foundation stiffness which provides surface contact restraint.  

Reference Solution:  The following equations can be derived from Macaulay’s beam method. 

For this example: 

W = 555.86kg/m 

E =203.4GPa 

I = 7.014E-3m4 

δ = 1.5 

This gives: L=95.9m; l = 31.98m; MMAX = 2799kNm; P = 393kN. 

 

The model properties represent a 36”OD 1”Wall being lifted in air when supported on a sand foundation. 

The model used a DyNoFlex time history solution. The weight is applied and then the pipe is raised. Could be 

done in one step. 

The solution results are summarised below.  These results are considered more accurate than the Macaulay 

approach because the Macaulay assumes unrealistic boundary conditions at touchdown (zero slope, zero 

moment and zero displacement).  

 

δ = 1507mm 

θ = 0.0012 rads 

 

MMAX = 2797kNm 

 

 

 

P = 387kN 

 

 

Shear at the LHS and RHS of the lift point. Once the LHS is lifted 

clear the LHS shear force remains constant. 
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Example 7.3 Thermal Expansion of Buried Pipeline  

Model: PipelineExpansion 

This is an example of thermal expansion and thermal cycling of a buries pipeline. The model represents a 10km 

concrete coated pipeline (512mm OD x 11mm wt) buried to a depth of 1m. The operational thermal 

differential of 65C is applied.  The soil stiffness characteristics are based on ASCE's "Guideline for the Design of 

Buried Steel Pipe”. The evaluation of the soil springs used FS200’s Pipeline Properties utility. 

The model uses a Type8 beam element. Type 7 non-linear couples are used to provide an axial kinematic bi-

linear soil spring.  The loading is applied in two stages. Gravity then thermal. Note that the gravity case is not 

actually required the expansion case – resistance is from the soil spring. 

Reference Solution: Sample Calculation. 

The apparent anchor for is given by :  L = α.ΔT.E.A / (μ.w) μ.w = Resistance = 6.6kN/m for this buried pipe. 

For ΔT = 65 the L = 379.2m.  The locked in force is F = α.ΔT.E.A = 2503kN. This assumes rigid friction. 

Force at 65C - 2499 kN Case 100 

Because of frictional mobilisation no distinct anchor. 

379m is within the mid curve portion. 

 

Residual Force at 0C - 1064 kN (max at E35) Case 101 

 

Initial End displacement at 65C - 134.4mm Case 100 

 

Residual End displacement - 65.7mm Case 101 

 

 

 End 

Displacement         Mid Force   Force at E35 

  



FS2000 Analysis  

      Verification Examples Page  76 

Example 7.4 Lateral Bucking of  a Pipeline–  Large Displacement - Contact  

Model: Pipeline_Buckling 

This is an example of pipeline buckling (elastic-plastic) due to axial compression due to thermal and pressure 

effects. The model represents a 10km pipeline (767.4mm OD x 33.7mm wt) resting on the seabed. The pipeline 

has an out of straightness of 500mm at the mid-section, defined as an undeformed shape.  The operational 

temperature and pressure differential of 60C and 30MPa is applied.  

Reference Solution: AN INTEGRATED NUMERICAL APPROACH TO DESIGN OFFSHORE PIPELINES SUSCEPTIBLE TO LATERAL BUCKLING, 

OMAE2015-42119.  No information on the initial lateral shape only a magnitude of 0.5m given. 

The local mesh density in the FS2000 model was twice that of that in the reference solution at the prop 
location. No details of the material model used were available, but the deflection and curvature plots would 
indicate a plastic solution was undertaken. FS2000 used a commonly used Ramsberg-Osgood relationship for 
plasticity and a VM failure criteria. 
 
Case 101 Effective axial force of 9284 kN (compares well with Case 1 from the reference plots) 
 

 
 
 
 
 
 
 
 

Case 102 Apex buckling load 7040kN. The axial force vs lateral displacement plot shows similar trends. 

 
 
 
 
 
 
 
 
 
 

Case 104 Show similar post buckles axial load distribution 5038kN max and 826kN at buckle. 
 
 
 
 
 
 
 
 
 
 

Case 103 Max Lat Disp 15.6 m.   Case 104 Curvature 0.0166  
 
The distributions obtained are very similar. It should be noted that these results are very 
close considering that an elastic solution produces very different results. Effective plastic 
strains of 0.615% were obtained from this solution case. The plasticity is evident from the 
peaked appearance at the location of the maximum.   
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Example 7.5 Upheaval Bucking of a Pipeline  –  Large Displacement - Contact  

Model: PipelineUHB 

This is an example of pipeline buckling (UHB) due to axial compression due to thermal and pressure effects. 

The model represents an 8” buried pipeline with initial vertical upward out straightness. The objective of the 

model is to assess the susceptibility to Euler buckling for defined cover heights.  

Reference Solution: Third party verification of FS2000 and ANSYS for this type of problem. 

 

 

 

 

 

 

 

 

 

The model was generated using FS2000’s Pipeline Properties Utility (not exactly the same FS2000 model used 

by the third party.  

For comparison a 500mm Imperfection with 1000mm Top Cover case was used. This is Case 105 at the top of 

the Batch File. 

A static DyNoFlex time history solution is used to obtain the buckling load. The solution starts with an initial 

straight pipe, imposes the imperfection, applies a top cover and ramps up the pressure and temperature.   

 

This axial plot indicates that buckling occurs when the axial reaches 

2090kN.  This compares favourably with that shown in the above 

verification reference. 

The plot below shows the variation with other cover heights, again 

compares favourably the reference solution. 
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Example 7.6 Static Analysis of a Steep Wave Riser Configuration –  DyNoFlex/FS-Wave 

Model: SteepWaveRiser 

This example evaluates the shape and loading in a riser. The model uses Type 16(8) moment curvature beams 

(suited for tension dominated flexible structures). Three cases: still water, positive current and negative 

current. Top offsets of 25.7m applied with currents. DyNoFlex time history solution. Same mesh density as 

described in the reference solution was used (considered a bit coarse).  

Reference Soln: Efficient Method for Analysis of Flexible Risers, BOSS(Behaviour of Offshore Structures), Carl 

M. Larsen et al.  

 

 

 

 

 

 

 

 

 

Moments  FS2000  Ref 

Mid  1.89  1.9 

+veCurr  1.33  1.3 

-veCurr  3.04  2.45 

Top Tens  FS2000  Ref 

Mid  1.28  1.28 

+veCurr  1.37  1.37 

-veCurr  1.24  1.22 
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Example 7.7 Dynamic Slugging Flow in a Horizontal Pipe Loop  

Model: Pipe_Bend_Flow 

This is a model of 180-degree horizontal pipe loop. The pipe has a two-phase slugging flow regime.  

Liquid Phase   30m long 42 kg/m 

Vapour Phase 4 5m long 8 kg/m  

Velocity 10 m/s 

OD=280mm t=20mm     Radius=6.366m 

 

Reference Solution: “Slug flow induced oscillations on subsea petroleum pipelines”, Sergio N. Bordalo , Celso K. Morooka, Journal of 

Petroleum Science and Engineering(2018). 

The bend is formed by segmented straight Type 6 pipe elements. The dynamic loading is generated using 

FS2000’s moving load generator. This generator enables gravitational and inertial loads to be evaluated from a 

train of distributed or concentrated moving loads. A DyNoFlex dynamic time history solution is employed to 

obtain the response. 

The plots below show a comparison of the horizonal (x & z) reactions at the supports for the inertia loads. 
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Example 7.8 Heave Frequency of a Floating Column  

Model: HyWind 

The model is an extract from a larger model which was used to simulate the movement of a 3-line moored 

column (wind turbine) under wave action. It has been simplified to evaluate only the heave frequency.  

The solution is obtained using a DyNoFlex dynamic time history solution. The hydrodynamic data is defined 

using FS-Wave (only Stillwater used). 

Reference Solution: Basic Theory - Heave Period = 2π(m/k)0.5 

 

The diameter of the column varies from 14.4m to 4.1m.  

The mass of the structure is 13,333 tonnes (steel weight and distributed ballast). 

The total buoyancy is 13,068 tonnes when in its initial position. This when the N28 is 

at STW i.e. the Y origin. 

The model has no restraints, and equilibrium will only exist when the column 

buoyancy force = gravitational force. 

The added mass coefficient is set to zero for purely axial movement. Rayleigh 

Damping Coefficients provide 10% damping at 25s to 30s periods. 

The diameter at the interface is 9.5m.  

Floating stiffness k = ρgA = 1027*9.81*π*D2/4 = 714kN/m 

Heave frequency = 2π(m/k)0.5 = 27.16s 

The initial transient from the application of the loads indicates final displacement of 

about 3.64m i.e. as it sinks to its mean SWL. The period of oscillation in the plot is in 

the region of 27.15s 

 

 

 

 


