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Introduction

The verification document presents FS2000 solutions to a range of problems which have solutions available
from another sources. These solutions may be analytical, analysis solutions in the public domain or other
software packages.

A comparison with third party solutions is not always that exact. Models may not be that same or have the
same degree of refinement when comparing FE solutions. Analytical solutions may differ because of numerical
accuracy or the difficulty in imposing the precisely the same idealised conditions. For this reason, no attempt
has been made to include % comparisons.

This document is not intended as a tutorial document and the model description etc. have been restricted to
single page for each problem regardless of example complexity. However, the solutions may be useful in
illustrating the approach to various types of problems.

Although areas of application overlap, an attempt has been made to broadly categorise the solution by section
heading.

Section 1 Generally Linear — Can be solved using the Standard 3-D solver.

Section 2 Non-Linear — P-Delta and Large Displacement

Section 3 Non-Linear — Large Displacement (Flexibles)
Section 4 Non-Linear - Elasto-Plastic
Section 5 Dynamic

Section 6 Heat Transfer

Section 7 Specific Applications

Note that 2-D and 3-D Elasto-Plastic solid solutions can only be solved using DyNoFlex because the degrees of
freedom (DoF) are defined as 2 or 3 accordingly. Plastic shell (6 DoF) solutions can be solved using 3-D Non-
Linear.

Earlier version of FS2000 may experience convergence issues with some Elasto-Plastic solutions that use solid
elements.

Verification Examples Page 1
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Example 1.1 Plane Frame — Beam Elements

Model: PlaneFramel

The example is a two-element rigid frame with fully fixed supports. Two cases are considered, one with
concentrated nodal loads and one with distributed elements loads.

| = 8E-4m* A = 2E-3m?; E = 210GPa

ba——5.60 gy —a] 192 kN m
A Bl 240 kN :
“ 4 ‘/.-' Case 1 Evaluate the nodal displacements.
450 m
tl e
TR

Case 2 Evaluate the moment distribution.

— 9.60 m
7 s
T =

#80m | 10 EN/m
’ R0 &

Reference Solution: Structural Analysis, RC Coates, MG Coutie, FG Kong, Second Edition 1980 Page 254-255.

A

The refence solution values are shown in parentheses.

““j%n X =] 2 Case 1
AX =-0.4478mm (0.448mm)
E2 AY =-.01024mm (0.102)
AB =-8.215E-4Rad (8.22E-4)

-5.74 kKNm
%ﬁ%m/ - T Case 2
<E2 Moment at A = 2.86kNm (2.86)
Moment At B = 5.74kNm (5.74

291m - Moment At c = 26.91Nm (26.9
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Example 1.2 Simple Truss — Beam and Couple Elements

Mode:PinnedTruss

This is a simple pinned truss is modelled with rigid beam elements but because of the slenderness and the fact
that there are only nodal forces, the frame behaves as pinned structure. Two of the elements are connected to

the frame using couple elements. These couple elements have stiffness about 1000 times that of the beam
axial stiffness. The couple local axis is referenced to the connected beams i.e. the local x axis are aligned. The

model is restrained using node to ground couples using a similar stiffness.

Reference Solution: Theory of Matrix Structural Analysis, J.S. Przemeiniecki, 1985, Page229.

ATORN

063 KN

Dk -2.00 kN 00 kN

0.00 kM

052

-079kN

-0.44 kN

[0.44 kN

[0.00 kN

(B el E1
. 1.00 kN
0.44 j0.44 kN
El X 82 2.00 kN
w 79 kN z X
Member axial forces Couple Forces

The couple forces show the restrained reactions and the forces in E1 and E3 at the connection points.

The following table give the normalised axial forces from the reference solution.

1 2 3 4 5 6 7 8 9 10

11

0.442 442 0.789 -0.625 | -0.558 |0 1.558 0.625 -0.798 | -1.442

-0.442
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Example 1.3 Plane Frame Contact — Beam and Couple Elements

Mode:BeamContact

This is a frame arrangement formed with rigid beam elements. The model incorporates a compression only
contact element at point C. The objective is to establish the support reaction.

200 kKN 250 kN

3 M2 M :5m—$-35m—-'
B 1 _.¢ 1)%

To ensure compatibly with the reference solution the area of
the section is defined with high value, the shear is made zero

and the | value were varied using the E values.

The solution uses the Standard 3-D Solver with the Contact
RO { Option active.

r——— S m — - 5m- e

Reference Solution: Structural Analysis, RC Coates, MG Coutie, FG Kong, Second Edition 1980 Page 185.

KLFy—zoo OkN_ |

‘L; Case 1 Downward Loads.
y-250.0kN .}

Case 2 Upward Loads.

Case | Contact Closed
The refence solution values are shown in parentheses.

31779 kN

Action A B C

Vertical kN 47.77 (47.8) | 317.79 (318) | 84.44 (84.4)

Horizontal kN | 20.80 (20.8) | 0 -20.80 (20.8)

Moment kNm | 20.78 (20.8) | 0 0 e

=20.80 kil

l47.77

2080 kN
X

Case 2 Contact Open
No reference solution but solution clearly in equilibrium.

Action A B C

Vertical kN -252.49 | 000.00 | -197.51 &+
Horizontal kN | -249.84 | 0 249.84

Moment kNm | -249.65 | O 0

Verification Examples Page 4
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Example 1.4 Pressurised Pipe — Pipe Element

Model: Pipe

The is an example of a pipe undergoing changes in pressure and temperature. Several different loading
scenarios are considered.
Reference Solution: Roark.

Pipe Diameter = 219.1mm; Wall = 8.18mm; D/t =26.78.

$§\ E =203GPa; Poiss Ratio = 0.3; Coeff of Thermal Exp = 1.093E-5
— Internal Pressure = 200Bar: External Pressure = 20 Bar

Change in Temperature 100C
The pipe is fully fixed at the LHS. The RHS has two conditions, axially free or axially restrained.

Case 1 Pressure only - free

Case 2 Temperature only - free

Case 3 Pressure and temperature — free
Case 4 Pressure only - fixed

Case5 Temperature only - fixed

Case 6 Pressure and temperature — fixed

In pipe stiffness analysis the pipe ends are always assumed to be end capped and therefore when the pipe is
fixed both the end cap pressure load and the wall restrain load contribute the restraining reaction. In this
model the effective axial force is also the restraint reaction. The effective axial force is the force that can cause
Euler buckling. In FS2000 the pipe axial force is always the effective axial force.

Theory

The evaluated hoop stress the standard output from FS2000 always uses Sh = Ap.Do/2t . Note that this may be
different from that used in piping design codes

Roark presents formula for the axial displacement of thick-walled cylinders subjected to both internal and
external pressure. These can be combined and re-arranged the give the following.

Pressure strain is based on ep = (1 - 2.)(Pi.Ai - Po.Ao) / ( EAs) = 2.07E-4

Thermal Strain €7 = o.AT = 1.093E-3

Pressure Restraint force = €p.As.E = 2.281E5 Thermal Restraint force = e1.As.E = 1.2049E6

True Wall Axial Stress = (Effective Axial Force + End Cap Force) / As
End Cap Force = Pi.Ai - Po.Ao = 5.70E5: As =5.4202E-3

The above agree exactly with the solution output given in the table.

Case No | Hoop Stress True Wall Axial Stress Effective Axial Force End Displacement
MPa MPa kN mm

1 241.05 105.21 0 0.207

2 0 0 0 1.093

3 241.6 105.21 0 1.3

4 241.6 63.13 -228.1 0

5 0 -222.32 -1204.95 0

6 241.6 -159.19 -1433.05 0
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Example 1.5 Piping Flexibility Analysis — Pipe Elements

Model: Piping2
This is a B31.3 example of a piping system subjected to gravitational, internal pressure and thermal expansion.

The arrangement has two pipe bends that significantly reduce the expansion load induces in the pipe.

Fig. 5301.1 Simple Code Compliant Model
OD 406.4mm (16”); Wall 9.53mm

@) 20) @ Bend Radius 609.6mm (1.5D)
12.2m 3.06m, 9.15m
l40ft) (o | (30 Material: ASTM A106Grade B
Y ra— E =203.4GP; u = 0.3; ar = 1.093E-5; Density 7850 kg/m3
L, @ ® L
ZEX £
2|2 Bend Flexibility factor = 9.506 (FS2000 evaluated)
@® 8|
-
al * ;\ ) Pipe weight 248.36 kg/m

The pipe weight effect contents (SG-1) and insulation coating 127mm thick density 176kg/m?3.

Reference Solution: ASME B31.3 — 2010, Appendix S, Example 1 S301.
The refence solution values are shown in parentheses (averaged from commercial programs).

Note that longitudinal pressure effects are excluded for the expansion case.

Node Axial Force Bending Moment X Deflection Y Deflection
10 26.53 (26.5) 21.4 (21.52) 0 0
15 26.53 (26.5) 10.64 (10.71) 18.361 (18.3) -1.304 (-1.3)
20 26.53 (26.5) 47.91 (47.56) 36.698 (36.7) 0
45 26.56 (26.5) 14.93 (14.9) -18.361 (-18.3) 13.461 (13.5)
50 26.53 (26.5) 47.29 (47.48) 0 0
2653 kN -2653 kN 2653 kN
-26 E%MI J E%
82 Kl
-26.53 kN -26.53 kN -26.53 kN -2E 33 kN
J l 37.82kN |
Eﬁr" V V V %mm kN

-14.93 kNm

-65.51 kNm
"2 kNm
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Example 1.6 Piping Flexibility Analysis — Pipe Elements

Model: Piping3

This is a B31.3 example of a piping system subjected to internal pressure and thermal expansion. The objective
to evaluate the displacement stress/force ranges resulting from two operational conditions.

Fig. 5303.1 Moment Reversal Model Header
’——1;?,5" ' ‘;E;“T‘giﬁ“ iy ’fﬁ 0D 609.6mm (24”); Wall 9.53mm
65) @ — Ffomem Branch
: TP “#% 0D 508mm (20”); Wall 9.53mm
a0 110, 120’ 130 140’ 340) 152m
@ 2 ©® Pwn® © & & | &% Material: ASTM A53Grade B
r._ 20 - r
e - ~ @ Fipe mz"m ot |12 E =203.4GP; u=0.3; ar = 1.093E-5; Density 7850 kg/m?3
anchor @ @ (29 é@ @ 330) fremin X 5
® Fi;fpm T ' ® "ot Valve Stiffness Factor = 10
freical Ambient Temp = 4.5C
Condition | Headers West Branch 30-330 | East Branch 40-340
Casel 17.24Bar | 121 C | 17.24 Bar 121C 0 4.5C
Case 2 17.24Bar | 121C | O 45C 17.24 Bar 4.5C

In this example there are only two operating conditions therefore the range can be obtained using a load case
combination. Load Case Combination 10 subtracts Case 2 from Case 1 to obtain the range between the two
cases.

Reference Solution: ASME B31.3 — 2010, Appendix S, Example 3 S301.
The refence solution values are shown in parentheses (averaged from commercial programs).

Branch - Axial Force Range = 161.54kN (156.97); Moment Range = 93.34kNm (91.8).

The reference solution has slightly lower value indications are more flexible arrangement. B31.3 does state
that a variation can be expected depending on the stiffness parameters used. If a unity value was used for the
valve stiffness factor the force and moment would reduce to 151.4kN and 78.16kNm.

16153 kN

16153 kN
¢ 4.\ 0334 kim
” -93.34 kN
28 TR B1ETN i 4@ "
4/3151 53 kN . 16153 kN “?& Ry
el 161.53 kN Z X F)
: = /593 34 FHm - 9334 kNm
o

4 ,\E -92.34 kNm
033 W*—f

S R
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Example 1.7 Cantilever Beam — Shear Deflection

Model: ShearBeam

100.00% In this example a deep cantilevered | beam is
oo subjected to a tip. The resulting deflection is due to
£ :ZZ 1 flexural deflection and shear deflection.
2 oo N Flexure
% 50.00% '/\ oot Unless the beam is deep the contribution from shear is
g soo / generally small and is often neglected in hand
8 :Zx s calculations.

ERRLES The contribution from shear is a function L/D for a
U specific section i.e. the slenderness.

The beam formulations in FS2000 include shear stiffness and therefore when comparing solution that don’t a
difference may be identified. In this example the deflection contributions are identified.

Reference Solution: S. Timoshenko, Strength of Material, Part I, Elementary Theory and Problems, 3rd Edition,
D. Van Nostrand Co., Inc., New York, NY, 1955, article 39.

P’ PL
A=y ——.
3El GA,

The comprises of two beam elements, one has shear deflection active and the other not.

The | beam is a UB914305224.

14305224

L=3m

As = 1.447E-2 m?
14305224 USD914305224 G =78.85GPa

W = 600kN

]

Deflection due to Shear = W.L/As/G = 1.5776mm
Deflection including shear deflections = 8.583mm
Deflections excluding shear deflections = 7.006mm
Contribution from shear deflections = 8.583mm - 7.006mm = 1.577mm (1.5776)

In this section this represents 18% difference for a L/D of 3.3.

Verification Examples Page 8
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Example 1.8 Curved Beam — Bend and Beam Elements

Model: CurvedBeam

In this example a cantilevered curved pipe beam is subjected to vertical and horizontal tip loading in the plane
of curvature and normal to the plane of the curvature respectively.

Bend radius: 1m; Pipe OD; 100mm; Pipe wall:5mm
E = 203.4GPa ; Poisson’s Ratio = 0.3;G=78.23GPa

Tip Load = 1 kN. A case with 10 Bar internal pressure is also analysed.
The model contains 3 bends formed from:
One Type 3 Bend Element

L Four Type 3 Bend Elements

i
k. -

Four Type 0 Straight Beam Elements

Reference Solution: S. Timoshenko, Strength of Material, Part I, Elementary Theory and Problems, 3rd Edition,
D. Van Nostrand Co., Inc., New York, NY, 1955, article 80 & 85. To make the FS2000 solutions compatible with
the slender theory solutions the shear displacements are excluded (Shear area =0).

Case 1 In-plane Vertical 1 Bend Elem 4 Bend Elems | 4 Beam Elems
Vertical Displacement mm 2.290%(2.290) | 2.290 2.218
Horizontal Displacement mm | 1.455 1.455 1.445

*With shear displacements included 2.304

Case 2 Out of plane Horizontal

1 Bend Elem

4 Bend Elems

4 Beam Elems

Horizontal Displacement mm

3.636 (3.636)

3.636

3.543

To be expected the bend element give identical results. The segmented bend formed by 4 straight elements

gives very similar results but slightly stiffer.

z

| pedun

The batch file also incudes the same cases but using a non-linear time history solution.

The overlaid bending moment plots are identical for the 3 bend

configurations.

The shear force plots show how the segmented bend configuration

approximates the shear and axial effects. More segments would

improve the accuracy.

X

JETa— L
|

_10akn 083N
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Example 1.9 Cantilever — Beam & Shell Elements with Offsets

Model: PlateBeams

In this example a T section cantilever is modelled using four distinct techniques.

Conventional Beam Elements.
Shell elements with offset beams.
Offset shell element with beams.
All shell elements.

i

beam assemblies.

The T section has the following properties: Depth:60mm; Width:200mm; Thickness:10mm: Length:2m
E = 205GPa; Poisson’s Ratio = 0.3. The tip load on the cantilever is 1kN.

The beam sections used in the offset configurations is a rectangular section 50mm deep by 10mm wide.
This offset by 30mm, the distance between the flange and stem centroids.

Reference Solution: Engineers Beam Bending.

I8 Geometric Property Data

The Tee section properties were evaluate using FS2000’s

Deesignation © Newlibrary  LbrayName [ prop g
Weidht ko/m 20— & ExistingLibrary  Library Name  [FlateBeams. PRT - property generator-

Elastic Properties Elastic Moduli
Area m2 2.5000E-03 Zzz w3 9.9129€E-05
e w4 [(05ED7 zyne  [E0ED | = 4.808E-7m*; Z = 9.8129E-6m?3; Shear Area = 6E-4m?
Iy mé  [EETOBEDE - Plastic Maduli
Iws md 8.3333E-08 I L Szz m3 1.9688E-05
. Eccent:\;gyn pad 5\})::”"3 . 1.0125E 04 Tip D|sp|acement = W|3/3E| =27.055mm

2 mm | ‘arping Constant

Oy nm [T10 ¥ wne  EOTETT Bending Stress (stem) = W.I/Z = 203.8MPa

AcdtoUSD Bufer | View/Edt Libvay | dcdto Ly | Ome |

Shear Stress = 1.66MPa

The use of offsets is commonly used to stiffen

Theory | Beam | Shell — Offset Beam | Offset Shell - Beam | Shell
Deflection mm 27.06 | 27.1 27.29 27.29 26.97
Stem Stress MPa 203.8 | 203.8 231.8* 231.8* 196.8
Flange Stress MPa | 45.83 | 45.76 51.34 51.34 46.68

*Bending + Axial Stress
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Example 1.10 Plane Truss — Thermal Expansion — Beam Elements

FS2000 Analysis

Model: PlaneTruss

The is an example of a simple 2-D truss in which one member is 1mm too short but is forced into place. The

solution to the problem is to use thermal strain simulate the member being too short.

P2

P2

M4

The frame is 4m high and 3m wide.

P1 members have a csa = 500mm?
P2 P2 members have a csa = 1000mm?

The member between N2 to N3 which is 5m long is 1Imm too short.

E = 200GPa
Coefficient of Thermal Expansion = 1E-5

P2

Reference Solution: Structural Analysis, RC Coates, MG Coutie, FG Kong, Second Edition 1980.

The model uses TypeO beam elements. To ensure the frame behaves as a truss the | values have been defined

with a very low value (1E-12). More convenient than defining moment releases.
Temperature Difference applied to member =€/ a =1E-3/5/ 1E-5 = 20C

The forces shown below agree exactly to those quoted in the reference solution.

-4 40E03

-4 40E03

-5.87E0]

-5.87E03

Z33E03

-4.40E03

7.33E03

-4.40E03

-5.87ED]

-5.87E

"33E03

ZA3E03

B4
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Example 1.11 3-D Portal Frame Settlement — Prescribed Displacement — Beam Elements

Model: FrameSettlement

The is an example of a simple 3-D portal in which column member sinks by 0.5 inches. There are no other loads

on the frame. The model is US units.

240.000
W

120.0(
120.000

120.000

All degrees of freedom at the column bases are are fixed.

E = 29000ksi; p = 0.3

A =10ins?; Ix = ly = 300ins%; Ix = 10ins*

Mid column settlement (N5) = 0.5”

Load Case defines a vertical downward displacement of -.5” at N4. No other loads are applied

The solution used the 3-D Standard Solver. This solver does allow displacements to be define in restrained

freedoms. Note that the non-linear solver do not allow this.

Reference Solution: A STAAD model.

ALL UNITS ARE -- KIP INCH (LOCAL )

MEMBER LOAD JT AXIAL  SHEAR-Y SHEAR-Z  TORSION MOM-Y MOM-Z
11 1 8.97 -0.08 .15 -0.46  -19.22 167.07
2 -0.97 8.88  -8.15 8.46 8.65  -116.64
2 1 2 0.88 8.97 8.15 8.65 -0.46 116.64
3 -0.08 -8.97  -8.15 -8.65  -36.66 116.82
3 1 3 -1.95 -0.087 .87 -0.80  -116.17  -116.17
4 1.95 8.07  -e.e7 0.80  107.13 107.18
4 1 3 e.08 -0.97  -0.15 -0.65 36.66  -116.82
5 -0.08 8.97 8.15 8.65 0.46  -116.64
5 1 5 8.97 8.15 .08 0.46 -116.64 -8.65
6 -0.97 -8.15  -0.88 -8.46  167.87 19.22

Elem Node Fx Fy Fz

kip kip kip

1 1 -0.97 0.08 -0.15
2 -0.97 0.08 -0.15

2 2 -0.08 -0.97 -0.15
3 -0.08 -0.97 -0.15

3 4 1.95 0.07 0.07
3 1.95 0.07 0.07

4 3 -0.08 0.97 0.15
5 -0.08 0.97 0.15

5 6 -0.97 -0.15 0.08
5 -0.97 -0.15 0.08
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Note: kip-ins for moments

kip-ft

.04
.04
.05
.05
.00

.05
.05
.04
.04

kip-ft
1.
0.
0.

My

60
05
04
.06
.93
.68
.06
.04
.92
.72

Mz

kip-ft

-8.
-9.
-9.

9.
-8.
-9.

9.
-9.
-1.
-0.

92
72
72
74
93
68
74
72
60
05

Mryz

kip-

10
12

10

ff

72
.72
.20
.63
13.
.20
.72
.06
L2



FS2000 Analysis

Example 1.12 Stresses in Thick Cylinders — Axisymmetric Elements with Contact

Model: CylinderContact

The is an example of a pressurised 2-part composite thick cylinder. A built-up cylinder with a radial
interference is subjected to an internal pressure.

The assembly is modelled using Typed0 2-D axisymmetric elements. The interface between the two cylinders
uses contact elements — Type 12 Couple elements. Thermal strain was used to create the interference strain.

a=4"

b=6"

c=8"

Interference = 0.005”
(137.25F)

Reference Solution: S. Timoshenko, Strength of Material, Part Il, Advanced Theory and Problems, 3rd Edition,
D. Van Nostrand Co., Inc., New York, NY, 1956, pg. 211, problem 1 and pg. 213, article 41.

LHS — No radial interference.
Hoop Stress = 49.827ksi

RHS — With radial interference.
Hoop Stress = 42.192ksi

AA

Li ised St Flot,
ineanse ress Hots Linearised Stress Flots

4 BOED4: 4.50E04+]

4 00E04. 4.00E044

350604 3506044

3.00E04. 3. 00E 044

2.50E04, 2 50E 044

2.00E04: 2.00E044

~w~.,.mm<~m
—w— wmawn- 0

1.50E04 1.50E04+]

1.00E04: 1.00E044

5.00E03: 5.00E039

0.00E00- 0.00E

0.000 1.000 2.000 3.000 4000 0.000 1.000 2.000 3.000 4.000
Distance Between Nodes Distance Between Nodes

Modet CyindeiCantact Setion betueen Node23 & Nodz102_ ModebCyinderContact  Section between Hade23 4 Nade102

The interference fit decreases the hoop stress from 49.827ksi (50) to 42.192ksi (42).

The slight difference to the reference solution is due in most part to the linear extrapolation of the stresses
from the Gauss point to the nodes.
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Example 1.13 Tensile Plate with a Hole — 2-D Plane Stress Elements

Model: Plate_Hole

The is an example of a flat plate with a hole. The objective is to establish the SCF at the hole and the linearised
stresses at the critical section. The model uses 8 Node Type 30 2-D plane stress elements.

F = 2000kN

w =400mm

F < o OId > F t=50mm
d=70mm

Reference Solution: Roark
Nominal Stress = F/w.t = 100MPa

The refence solution values are shown in parentheses.

Maximum Stress = 323.7 MPa (310)

Ke =3.24 (3.1)

If the size of the plate is increases to 800mm
the SCF becomes 3.03 (the exact value for a
hole in an infinite plate is 3.0)

LINEARISED STRESSES

Surface 1 at Mode 313
Surface 2 at Mode 347
Section width 0.165

Stresses at Surface 1

Su Sy Sz Suy Syz Sax
i Peak 323680 0750 0000 0070 0000 0.000
Lingarised Stress Plots Linear 172571 34091 0000 0075 0000 0.000

3236800,

Derived Streszes [Linearised Components] at Surface 1
Principle Stresz 51 =173.5708
Frinciple Stress 52 = 34.09086
Frinciple Stress 53=0
Stresz Intensity = 1735708
on Mizes Stress = 159.2854

261195547

23871104 tean [Membrane] accross section
S 5

Y Sz Sy Sz Szx
121172 13784 0000 0073 0000 0.000
19522654

woa om0

Derived Stresses at Mean Section
Frinciple Strese 51=1211719
Principle Stress 52 =13.75423
Frinciple Stress 53=0
Stresz Intensity =121.1719

on Miges Stresz =114.9138

1 15374209

111.25761
Stresses at Surface 2

: : : Su Sy Sz Suy Syz Sax
k] t T T Fesk 88570 0410 0000 -0.010 0000 0000

0.000 0.041 0,083 0124 0165 Linear 62773 5582 0000 0070 0000 0.000
Distance Between Nodes
ModetFlate. Hole Section betwesnNode313 & Nodk347 Derived Stresses (Linearised Compaonents] at Surface 2

Frinciple Strese 51 =68.77312
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Example 1.14 Simply Supported Plate — Shell Elements

Model: SSPlate

The is an example of a simply square support flat plate subjected to out of plane uniform Pressure. The
objective is to establish the displacement and the maximum bending stress in the plate.

Because the model and the loadings are symmetrical only a % of the plate is modelled. The model uses a 10 x
10 — 4Node element mesh. Two solutions are undertaken, a thin plate solution using Type50 shells (Kichhoff
theory) and a thick plate solution Type 52 shell (Mindlin theory). Note the next example uses 3-D elements to

model the same plate.

Length = Width = 1m Thickness = 100mm
E = 205GPa; Poiss = 0.3

UDL = 1000 kN/m?

Thin wall solution 0.216 (.2166)

Thick wall solution 0.246mm ( 0.244)

Thin wall solution 28.8MPa (28.740)

Thick wall solution 30.53MPa ( 30.39)

Thin plate Von-Mises 33.4MPa (n/a)) Thick plate Von-Mises 30.3(MPa (30.39)

The twisting moment (Sxy Shear) is a maximum at the corner in the Kirchhoff thin plate theory.
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Example 1.15 Simply Supported Plate — 3-D Solid (Type70) Elements

Model: SSPlateBrick

The is an example of a simply square support flat plate subjected to out of plane uniform Pressure. The

objective is to establish the displacement and the maximum bending stress in the plate.

It is the same scenario as that of the previous example which used shell elements. This model was formed by

extruding the shell in the y direction to give a depth (thickness) of 100mm. The model has 20 x 20 x 4 mesh of

Type 70 elements. As with the previous example % model symmetry utilised.

Refence Solution: Previous thick shell example.

)
<
N
e
S
S
o
<
N
o
c
<)
2
[S]
[}
fre
[}
o

Von-Mises Stress 30.6 MPa (30.3)

Bending Stress 30.5MPa (30.3)
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Example 1.16 Flat Ring - Linear Shell Elements

Model: Flat_Ring

The is an example of a flat circular ring subjection subjected to out of plane loading. The model uses Type 50
shell elements.

Reference solution: Roark

OD=2m

ID=1m

t=20mm

E = 205GPA
Poisson Ratio = 0.3

Case 10 100 kN applied as a line load at the inner edge. Outer edge pinned.

Case 11 100 kN/m2 applied as a UDL. Outer edge pinned.
H I-Jw’—% Case 12 100 kN applied as a line load at the inner edge. Outer edge fixed.
rof_a
Frm_ i jﬂm% Case 13 100kN applied as a UDL. Outer edge fixed.

The refence solution values are shown in parentheses.

Case | Max Deflection Inner ot MPa Outer or MPa
10 40.89 (40.97) 371.3(370.3) 0
11 41.43 (41.54) 358.9 (360.6) 0
12 4.911(4.937) 69.7 (67.39) 115.8 (118.3)
13 3.540 (3.529) 41.3 (40.65) 124.0 (120.0)

Radial Curvature at outer edge
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Example 1.17 Flat Ring - Linear Shell Elements

Model: Flat_Ring-Solid

The is an example of a flat circular ring subjection subjected to out of plane loading. The model uses 8 Node
Type 40 axisymetric solid elements. The flat ring and loading are identical to that of the previous shell element
example.

Reference solution: Roark

OD =2m; ID =1m; t =20mm; E = 205GPA; Poisson Ratio = 0.3.

T\L EFJ/T Case 10 100 kN applied as a line load at the inner edge. Outer edge pinned.
!’

o7 q
PRBL JU% Case 11 100 kN/m2 applied as a UDL. Outer edge pinned.
g""\ I-M Case 12 100 kN applied as a line load at the inner edge. Outer edge fixed.
Fof_a
fm_ E j:umy Case 13 100kN applied as a UDL. Outer edge fixed. The refence solution values are
|

shown in parentheses.

Case | Max Deflection Inner ot MPa Outer or MPa
10 40.96 (40.97) 370.0 (370.3) 0
11 41.54(41.54) 360.3 (360.6) 0
12 4.918(4.937) 67.2 (67.39) 113.8(118.3)
13 3.540 (3.529) 40.5 (40.65) 120.1 (120.0)

Case 12 Radial curvature at outer edge
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Example 1.18 Torsion of a Square Box Beam - Linear Shell Elements/Beam Elements

Model: BoxBeam

The is an example of a thin-walled box beam being subjected to torsional moment. The objective is to
establish the shear stress and the angle of twist. The model uses Type 50(0) shell elements and TypeO beam
elements

The model has two sections, The RHS is modelled used shell elements and the LHS is modelled using one beam
element. The centre of the section is fixed, and the torsion moments are applied at the free ends.

Length = 1m; Width (Height) = 150mm; t =T= 3mm; E = 205GPa; Poisson Ratio = 0.3: G = 78.85GPa.
Applied Torque = 3kNm
Reference solution: Roark

J=2Tt(BO=2(DTy*2/(Bt+DT-T=2-t"2) Twist =T.L/ (J.G) = 0.00599 Rads
Zt = 2At where t is the smaller of web or flange thickness and Shear Stress =T / Zt = 23.14 MPa

A =the mean enclosed area

The shell mid plane is at the mean wall i.e. the shell box is 147mm sq.

Mid Plane Shear Stress
22.7MPa (23.14)

\ »
in

End Twist
0.00588 Rads (.00599)

The beam torsional properties are based on the reference properties.

-2313 MPa

-2313MPa

Torsional Beam Stress
23.13MPa (23.14)

End Twist
0.00599 Rads ((.00599)
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Example 1.19 Bending of a Solid Beam - Linear Solid Hex/Beam Element with Offset

Model: SolidBeam

The is an example of a solid square sectioned beam being subjected to an end load shear load. The objective is
to establish the stresses stress and the tip deflection. The model uses Type 70 brick elements and Type0 beam
elements. The model also includes Beam offsets.

The model has two sections, The RHS is modelled using solid elements and the LHS is modelled using one
beam element with the aft node offset. The centre of the section is fixed, and the shear loads are applied at
the free ends.

Length = 500mmm
Width (Height) = 100mm
E = 205GPa.

| =BD3/12 = 8.3333E-6m*

Reference solution: Engineers Bending Theory - Deflection =WL3/3EI

The refence solution values are shown in parentheses.

Deflection Solid Elements
0.971mm (0.976)

Deflection Beam Element
(includes shear deflection)
1.009mm (0.976)

Deflection Beam Element
(excluding shear deflection)
0.976mm (0.976)

Solid Element Stress
Bending(Nodal Ave) 117MPa
Shear 4MPa (W/csa)

Beam Element Stress
Bending 120MPa (120)
Shear 5.3MPa*(W/0.75A)

*Be default the shear area for solid rectangular beam sections is taken as 0.75BD.

The mesh density of the solid mesh is far too coarse to capture other that the basic bending which
nevertheless is excellent for this type of element when they are square hexagonal.
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Example 1.20 Beam on an Elastic Foundation — Linear Beam/Linear Springs

Model: BeamWinkler

This is an example of beam supported on an elastic foundation (Winkler Foundation). The objective is to
establish the stresses in the beam and the tip deflection. The model uses discrete linear springs to represent
the continuous foundation support i.e. a lumped approach.

P Semi- infinite beam.
C \ |=7.2E-3 m*
C C C T E=21.7 GN.m?
FEEEIEETEIIEIITIEE)

k = Foundation Modulus = 4000kN/m/m

M

S,

A ////(

P =100 kN M =100 kNm

Reference Solution: Roark

The solution of a beam on an elastic foundation is periodic and the wavelength Lw = 21t/ where B = (k/4EI)%%
This is a useful parameter when discretising the beam. A minimum element length of L/24 will provide a
reasonable solution. If loading is concentrated as in this example a smaller element length may be more
suitable in the vicinity of the loading. The length of the model need not be any longer than 6/ to represent an
infinite length foundation.

For this model  =0.2828 and L =22.214m

Using these parameters as guidance the element length will be 0.45 (approx. Lw/48) and length of the model
21.6m. The model will be extended to 30m for demonstration purposes.

The stiffness of the foundation spring = 1.8E6 N/m.

The refence solution values are shown in parentheses.

Case End Displacement mm Max Shear Force kN Max Moment kNm
1 P+M 10.08 (18.14) 83.72 184.3

2 P 14.11 (14.14) 87.3 (100) f(ele len) 113.1 (114)

3 M 3.97 (4.00) 18.14 (18.24) 100(100)

B 5

.

Moment Distribution for Case 1

%V(mmmmmm111111111111111111111111
“"% X

Moment Distribution for Case 2 - Shear Only

Shear Distribution for Case 1

Shear Distribution for Case 3 - Moment Only
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Example 1.21 Plate on an Elastic Foundation — Shell Elements

Model: PlateWinkler

This is an example of square plate supported on an elastic foundation (Winkler) Foundation. A weightless plate
has a load distributed over a small square area in the centre of the plate.

Length = Width = 6m Thickness = 250mm
E = 25GPa; Poiss = 0.25

0 Foundation Modulus K = 4000kN/m?3
. ., Central UDL = 2000 kN/m?
EIE I I NN _ Loaded Area 500mm x 500mm square

The plate is modelled using a 24 x 24 mesh of Type 50 Shell
elements.

Loadin was applied as an element face pressure on 4 central

elements.

A

Reference Solution: An ANSYS model using SHELL 63 elements which are similar to Type 50 (Kirchhoff Plate
theory) was used. The ANSYS SHELL 63 elements were used because this element has a foundation stiffness
capability.

The refence solution values are shown in parentheses.

Maximum Deflection 6.269mm (6.264)

Maximum Von-Mises Equivalent Stress = 12.04 MPa (11.8)

[8 Node Type 51 model 12.4MPa]

Foundation Bearing Pressure Max = 25.1kN/m2 (n/a)
The reference solution software does not evaluate bearing stress but it can be inferred from
the y displacements (K*6.264) i.e. 25.056 kN/m2

[8 Node Type 51 model 6.386 (includes shear displacement)]

e ol W T
R T g
R T T
eEEERrT
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Example 1.22 Plate on an Elastic Foundation — Shell Elements

Model: PlateWinkler2

This is an example of infinite plate supported on an elastic foundation (Winkler) Foundation. A weightless plate
has a point load in the centre of the plate.

Length = Width = 300ins Thickness = iins
E = 29ksi; Poiss = 0.3
\ll Foundation Modulus K = 800kips/ft3

F % % 5 % = Central Point Load = 50Kips

The plate is modelled using a 50 x 25 mesh of Type 50 Shell elements. Because of symmetry only half of the
plate is modelled.

Reference Solution: A SAP2000 solution using the same mesh density.

Table 6-15. Center Displacement for Thin Plate Elements
Model and Output SAP2000 Independent Percent
Modulus Parameter Difference
50 = 50 mesh U, at center of -0.1827 -0.1782 253
k = 800 k/ft3 plate (in)

Deflection at centre of plate = 0.179ins

Max Foundation Bearing Pressure = 82.9 psi (n/a)

800/123*0.179 = 82.87
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Example 1.23 Plate on a Tensionless Elastic Foundation — Shell Elements

Model: PlateWinklerContact

This is an example of plate supported on a tensionless elastic foundation (Winkler Foundation. The model is
somewhat academic having very soft foundation. The foundation stiffness has very little influence on the plate
displacement it is effectively a monitor for the shell displacement.

a=10;b=0.2;t=04;E=1E6;v=0
K=7.168
q=1

The model uses 40 Type52 shell element and the

T SN foundation modulus K is defined as tensionless.

Reference Solution: “Behaviour of plates under contact constraints imposed by elastic foundations”, R.A.M.
Silviera, A.R.D. Silva<" and P.B. Gon§alves.

Case 1 is a tensionless Winkler foundation solution.

The maximum foundation contact stress = 0 = -7.61E-3. Max deflection = 1.03E-3 (1.03E-3*7.168 = 7.6E-3).
The foundation contact stress is zero at the RHS.

R*b*a3/D = 0*0.25*.2*ba3/D = 0.761/D (Note that D is not defined other than being an elastic parameter).

| |
40 T
20 — =
| L SzDieet
| | . | meoE
; | | i PR 4 -4 -~ 4 % 24604
! - 165 03
~ U0 | | | T -1 T H L2
= _ — i
] Hiza
< 4 | * Hsorea
2 20— 5o
* i L =3
é N bax 0000
- | 2
10 — #  Present (Form. 1) I 11! Min-7.E1E-03
— - -
™ Present (Form. 2)

6.0 14
——— Silveira and Gongalves -

80 |."-; T T T

0.0 02 0.4 0.6 0.8 10
wa

Case 2 is a normal Winkler foundation and indicates a tensile foundation stress of 3.3E-3. (0.461E-3*7.168=3.)

If the modulus is increase to 7.168E3 it has a significant effect on the displacements and the displacements are
very different — see below.

Tensionless Winker Foundation RHS-Liftoff Std Winkler Foundation
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Example 2.1 AISC — P-Delta Analysis

Model: P-Delta_2

P-A Effects

1.0 kip
(4.45 kN)

lP

|-— 28.0t(8.53 m) ——‘

Specifications for Structural Steel Buildings, ANSI/AISC 360-10, published by the
American Institute of Steel Construction gives some benchmark problems to assess the
effectiveness of software to account for the P-A and P-6 second order effects.

P-A Effects are the effects of loads acting on the displaced locations of joints in a
structure.

Axial Force, PlHps) | 0O 100 | 150 | 200
- 236 470 | 601 856
Mbasa (kip-in.) [336] [468] | [598] | [B48]
0907 | 134 | 177 | 280
Agp (in.} [ogo1] | .23 | (.75 | [2.58]

Major axls bending
W1dxd48 (W3B0xT2)
E=29,000 ksl (200 GPa)

The model is created in US units. It has one element. Because the loading produces only single
curvature sway no mid span nodes are required.

The model has 4 load cases to match the load cases in the example. The model is run using the
3-D Standard Solver with the P-Delta option active.

The results obtained compare almost exactly with those in the AISC table given above. Note
that the Engineers Unit option is Kip-ft (Switch off to see kip-ins)

Axial Force 0 100 150 200
Moment 336 470.2 600.9 853.08
Defln 0.907 1.342 1.766 2.585
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Example 2.2 AISC — P-Delta Analysis

Model: P-Delta_1

Specifications for Structural Steel Buildings, ANSI/AISC 360-10, published by the American
Institute of Steel Construction gives some benchmark problems to assess the effectiveness of
software to account for the P-A and P-6 second order effects.

The P-6 Effects are the effect of loads along the deflected shape of a member between joints.

This is a local member effect.
P-f Effects

R

g t Axial Force, P (kips) 0 150 300 450
< E .y 235 270 316 380
Mg -in.
S o bpin) | 225 | pes | 313 | @7y
N .
= ©
- " 0.202 0.230 0.269 0.322
=
o € Baia(In.) 0.197) | 0224 | 0261 | 0.311)
% <
N
“H_L
Major axis bending
W14x48 (W360x72)
F=2a nQQ ksi (200 GPa)
Pt
The model is created in US units. It has 2 elements. Because the loading produces single
curvature bending between supports only one mid-span load is required.
The model has 4 load cases to match the load cases in the example. The model is run using
the 3-D Standard Solver with the P-Delta option active.
The results obtained compare almost exactly with those in the AISC table given above. Note
that the Engineers Unit option is Kip-ft (Switch off to see kip-ins)
gl Axial Force 0 150 300 450
Moment 235.2 269.8 3156 379.7
Defln 0.201 0.230 0.268 0.321
X
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Example 2.3 Beams-Large Displacement

Model: ArchBeam

The is an example of a circular arch subjected to a concentrated load. The model uses 40 Type 6 beams to
represent the arch and uses a DyNoFlex solution. The loading is applied using prescribed displacements. To
enable the load to monitored the load is applied through a Type7 couple.

The reference solution: O C Zienkiewicz, "The Finite Element Method, Volume 2 Solid Mechanics, Page 372.

L W/R VIR

= EWPRE

o =+ N W ke U0 - 0 w0 O
T
.

Lead: 8

- § = * pe =109
R=100, $ = 215", t=1,0, E/l= 10 a 0.5 1 1.5

——————— Defiected position at maximum joad Displacements: U/R, VIR
(true scaie)

F32000 OyMNoFlex Model:ArchBeam

0.0000-

-220. 8666

-441.73324

MoTImIzomIon

-6E2.5995

Case 1 Displacement (1.19) just beyond snap through(P=731).

883 4665

0.000 297 5.950 8925 11.500
Time Step

Forces Flesult Case: 1 Optho 1 Couple: 1 Camp: 2

Case 2 Displacement (1.13) at Maximum Load (P=8.84)
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Example 2.4 Beams-Large Displacement

Model: SpaceBeam

This example is a 3 leg right angles cantilever. Two nodal loads applied at the tip. The model uses Type 6
beams and a FS-DyNoFlex solution.

The reference solution is from:

National Conference on Computational Mechanics MekIT’17 B. Skallerud and H | Andersson (Eds)

A COMPARATIVE STUDY OF BEAM ELEMENT FORMULATIONS FOR NONLINEAR ANALYSIS: COROTATIONAL VS
GEOMETRICALLY EXACT FORMULATIONS

b
™~

T i
s o
=S Result Case 1 True scale deflection
=
FS2000 DynaFlex Model SpaceBeam
--.ﬂ__‘_‘--__‘_‘__‘
--"'--_._
- —_—
'\-‘ ‘----_“'--
.
\
\
\
.
,
\l -0.5000-
,
X .
-
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Example 2.5 Shell Element 1°t & 2"Y Order Solutions

Model: Plate_In-Plane_Loaded

This example is a rectangular simple supported plate subjected to normal and in-plane loading. Three solutions
are obtained. A linear, small displacement P-Delta and a large displacement (updated geometry).

The model uses Type 52 shell elements and a 3-D Standard solution with and without the P-Delta option
active. The Type 50 or 53 could have been used but the Type 52 Mindlin plate was used to match the reference
solution. Case 3 is large displacement solution using FS-DyNoFlex — considered the most accurate solution
method.

A SS support 8m x 6m x 50mm is subjected to an edge load of 1000kN/m and a normal face load of 10kN/m2.
Plate material properties are: E=210GPa and PoissRatio=0.3

A reference solution is quoted from: StruSoft Verification Examples- shown in (). ANSYS solution used for
Large displacement.

Deflection Mx My Mxy VonMises
Mm kNm/m kNm/m kNm/m MPa
Casel—Linear  35.7(35.38) 25.6(26.62) 18.0(18.05) 13.9(13.68) 62.31
Case 2- P-Delta  55.2(54.69) 40.3(40.30) 28.4(28.50) 20.9(20.53) 92.78
Case 3 LargeDisp 46.1(*46.1) 32.3 22.3 18.8 81.2 (*82.2)
*ANSYS solution using Shell 181
ML VD”"é‘zse;
5 aie0s Llsss
8 72E0s [yt
s =35 H
e Has
1 7E04 s
{2 00E [
o 220 213
-256E04 Max 523
Max -2.85E02 Min 21.3
Min -2 56E04
X
X
r StressVon-Mises Top Wax=62.31 MPa (E88) Ave
Force:MiL Top Min =-2 5604 (£88)
Von-lgizses
L
[}
WL %;gg
=-4 BIED3 SHE
EEEa E s
I:I-'I 37E04 -38.5
= g ]
2o |,
2 meDe Man 32.6
-ﬁg ;gggi Min 23.0
--d 03E04
M -3.76E02
Wi 4. D3E04

r X
Stressvn-Mises Top Max=92.73 MPa (E38) Ave
X

Force:ML Top Min =-4.03E04 (E88)
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Example 2.6 Portal Frame Buckling - Beam Element- Eigen Buckling

Model: Portal_P, Portal_1, and Portal_2

The model uses Type 0 beam elements. The 3-D Standard solution with the P-Delta option active produces the
necessary result case for the Eigen buckling solution.

The model represents a 20mmSHS portal frame with L=1m. It is subjected to vertical point loads equal to the
column Euler buckling load.

The model illustrates the importance of mid span node when undertaking 2" order solutions.

The pinned frame bucking mode has only single curvature bending for the first mode i.e. sway frame.
accordingly mid-span nodes are not required to capture the P-A effects.

The other frames are non-sway and have double curvature bending and mid-span nodes are required to
capture the P-6 effects.

P -1mE p—7uX P,:,:ES.EE!
o L2 L
p=—t=_ 0188 B = F g5
— p_E!H =0.7437 P =
L T r
Model Portal_P Portal_1 Portal_2
No mid span nodes 0.185 0.752 3.02
1 Mid span node 0.184 0.748 2.59
2 Mid span nodes 0.184 0.746 2.55
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Example 2.6 Thermal Buckling- Beam Elements Eigen Buckling

Model: ThermalBuckling

7

In this example the cruciform frame is subjected to an increase in temperature.
At what temperature does the buckle.

RN

_* u—‘é The properties of each member are:
© A=50mm? | = 220mm¥ L = 250mm; E = 70GPa

%H'

The model uses Type6 beam elements, but Type 0 could be used for the Eigen
solution.

)

4111111?::1{:‘”4

The 3-D Standard solution with the P-Delta option active produces the necessary result case for the Eigen
buckling solution.

Reference Solution: Structural Analysis, RC Coates, MG Coutie, FG Kong, Second Edition 1980 Page 332.
The reference solution stated the buckling temperature to be 62C.

Load Case 1 has a temperature of 1C applied to all elements using property definition. This is solved using the
3-D Standard Solver with the P-Delta option active. The Eigen buckling solution give the following solution.

The resulting load factor indicates an Eigen buckling temperature
of 62.415C.

[

Z X

Buckling Load Factor = 62 415 in Mode 1 ﬂ

A DyNoFlex large displacements solution as also undertaken. A small arbitrary UDL was initially applied to give
a small displacement. The temperature was then ramped up to 80C. The following true scale deflection plot

and time history plot of the centre rotation were obtained. Clearly showing a sharp increase in the vicinity of
62C.

F52000 DynaFlex Model ThermalBuckle

0.0000:

B T

008254 -

Scooa-m

0123 e -

-0.1645;

T T T
0.000 20.000 40.000 60.000 80.0c
Time Step

Displacements Result Case: 10 OptMo: 10 Mode: 1 Comp: &
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Example 2.7 Shell element- Euler column buckling.

Model: ShellColumn

This example is a pinned column subjected to an axial compressive load. Two solutions are used. One is linear
Eigen Buckling solution and the other is a Large Displacement solution using FS-DyNoFlex. The model uses
Type 53 shell elements and a 3-D Standard solution with and without the P-Delta option active.

The column is 5m load and has a 100mm x 10mm rectangular cross sections. The is subjected to a compressive
load of 10kN and a 1% disturbing mid-span lateral load. Plate material properties are E=203GPa and
PoissRatio=0.3.

Reference Solution: The theoretical Euler buckling load Pe = 1?El/L2= 1.35 kN.
Case 1 Linear Buckling Modes

The Eigen solution gave the first 4 buckling mode.

Mode Load Factor

1.34956
5.40684
12.1973
21.7626

B W R

Case 2 Large Displacement - DyNoFlex Solution produced the following for a load factor of 2.
Case 3 Using prescribed displacement (top) to laterally deform the column to state .

The plot shows the lateral displacement. Cases 2 & 3 gives similar results.

DYNOFLE® ANALYSIS

Sy-Direct
[ ey
919.1

azmzmor-Te—o

0451

Min -0.5

[
0.0001
0.000 0200 0.400 0.600 0800 1.000 1.200 1.400 1.600 1.800 2000
TIME

Time History - Solution tonitor 21 3

Mid Span Bending Stress = 6*1E3*0.1*0.1966/0.1/0.01%2 = 1180 MPa

A model called BeamColumn uses Type6 beam elements for same configuration.
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Example 2.8 AISC — Beam Twist Flexural Buckling

Model: ASIC_Appendix_1_CA11

This benchmark example from AISC 360-22 demonstrates that twisting of beams under bending and axial
action can be included. In addition to small displacement P-§ effects, a large displacement (geometry
updating) is also required.

The model uses Type 6 beam elements and a DyNoFlex solution with the P-Delta and Large Disp options active.

To capture the twisting effects several mid-span
3%5\ nodes are required.
z —

T For purely flexure P-6 effects only 2 or 3 are
required for double curvature bending and 1 for
— single curvature bending.

The table below shows the comparisons between the AISC results for their (b) configuration (Cw=0) and the
FS2000 results.

*** NODAL DISPLACEMENTS ***

Node RC Tx Ty Tz Rx Ry Rz
ins ins ins Rad Rad Rad
8-G1 1 -0.009 -0.686 0.932 0.10499 0.00000 0.00000
-0.694 0.967 0.1078
8-G1 2 -0.028 -0.520 0.927 0.07830 0.00000 0.00000
-0.524 0.951 0.0790
8-G1 3 -0.040 -0.340 0.818 0.04747 0.00000 0.00000
-0.342 0.833 0.04710
8-G1 4 -0.061 -0.200 1.378 0.03551 0.00000 0.00000
-0.201 1.397 0.03580
**%* ELEMENT FORCES AND MOMENTS ***
Elem Node RC Fx Fy Fz Mx My Mz
kip kip kip kip-ft kip-ft kip-ft
1 8-G1 1 0.00 2.49 -0.26 -0.35 20.70 198.90
21.5 198.80
1 8-G1 2 -75.00 1.91 -0.28 -0.25 19.03 152.22
19.5 152.17
1 8-G1 3 -125.00 1.31 -0.24 -0.15 15.79 102.93
16.0 102.92
1 8-G1 4 -175.00 0.69 -0.41 -0.11 25.46 52.07
25.75 52.00
AISC Comparison
20 Minor Axis Moment % vs Mid-span Nodes
25 This shows the
20 importance of mid-span
15 nodes for this type of
1o solution (torsional-
5 .___‘_‘.___-_-_-—_L lateral) especially when
0 = » : axial loading dominates.
5 0 5 10 15 20 25

—a—Lload Case 1 —a—Load Case 4
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Example 2.9 Plate Cantilever Flexural Buckling

Model:

PlateCant_Buckle

The example uses Type 53 shell elements to model a plate cantilever. The cantilever becomes unstable due to
lateral-torsional bucking. The cantilever is a steel plate 10m long with a depth and thickness of 438mm and
40mm respectively. A point load of 10 kN is applied at the tip.

Reference Solution: Roark. The this predicts a critical tip load of 23.3kN for a load applied at the top of the tip.

Two solutions have been undertaken. A linear Eigen buckling solution and a non-linear DyNoFlex large
displacement solution. The DyNoFlex load case included a 1% lateral disturbing load.

0.0000.

DYMNOFLER AMALYSIS

-0.0043

-0.00864

—zmzmOor-TOn—o

-0.0129

......................................................

-0.017

ooz 0.588 1162 1738 27313

TIME

Tire: History - Solution Monitor

The Eigen solution predicted a load factor of 2.413 for the first
buckling mode. The compare to 2.33 from the reference
solution.

This plot shows the lateral displacement at the point of load
application. The maximum load factor is 2.313. This clearly show that
the onset of instability is within the region predicted by the
reference.
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Example 2.10 Plate Buckling due to pure Shear

—EZmImOokFroaeTo

Model: Shear_Plate

The example uses Type 53 shell elements to model a SS shear panel under the action of pure shear. The panel
becomes unstable due to shear bucking. The panel is a steel plate 1m square plate with a thickness of 2mm.
The plate is subjected to a constant shear load applied as a uniform edge load 1kN/m.

Reference Solution: Roark. The this predicts a critical shear stress
of 2.384MPa. (Load Factor = 4.768)

The 1 kN/m edge load produce a uniform shear stress of 0.5MPa

Two buckling solutions have been undertaken. A linear Eigen buckling solution and a non-linear DyNoFlex large
displacement solution. The DyNoFlex load case included a lateral disturbing load which produces a centre
deflection of 2.27mm.

The Eigen solution predicted a first mode buckling stress of 5.523*0.5 =
2.766MPa (2.384).

DYNOFLEX ANALYSIS
1.32E085
The DyNoFlex solution indicated a buckling limit if just prior
to the reference solution’s 4.768.
L 1L bemnooneene boooneeinoee bemnooneinn The buckling mode was similar the Eigen solution.
BLB2ED4 oo mee oo b b b
AHEN44 e b b b
1.94E-07 E .: .:
oo 1.183 2.385 3528 4.700
TIME
Time Histary - Salution Manitor 15 3

L
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Example 3.1 Cable Supporting Hanging Loads — P-Delta — Large Displacement

Model: CableLoads

This model represents a cable carrying three vertical loads. The solution will show that in the initial position

the cable is in equilibrium.

Reference Solution: Vector Mech for Engineers, Beer and Johnson, Page 260, Prob 7.8 (ANSY exp).

Result Case 1 is a P-Delta using the 3-D Standard Solver
Results Case 3 is a P-Delta using the DyNoFlex Solver (initial strain required for first iteration).

Both solutions give the following.
Reactions

Va=5kips Ve =17 kips
Ha=-17.99 He=17.99 kips

Iy
A A @ ®
' 5.%6 ft 2
6 kips L 12 kips
1
20 ft >10 ft 15 ft

15 ft

Tensions

X
T1 = 18.67 kips
T4 = 24.75 kips

—]

Results Cases 10 and 11 are P-Delta + Large Displacement (Geometry Updating) using a DyNoFlex static time

history solution.

In Result Case 10 the support at E is move 40 ft towards A.

16.26 Kips

Reactions

Va = 5.82 kips
Ha =-1.62

Ve = 16.18 kips
He = 1.62 kips

Tensions

T1 = 6.04 kips
T4 = 16.26 kips

In Result Case 11 the support E is moves 40 ft towards A and then back 40 ft to its original position. This results

in the same loading as given above for Case 1 or 3.
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Example 3.2 Cable Net Supporting Hanging Loads — P-Delta — Large Displacement

Model: ParabolicNet

This model represents a pre-tensioned cable net subjected to a series of 15.7N concentrated loads and
establishes the displacements due to these loads. The cable net is pre-tensioned to 200N. The cable
gravitational load is 195 N/m. E = 128.3 KN/m2, csa = 0.785 mm?2. The preload and the concentrated nodal
forces dominate. This enables an accurate solution to be obtained using very few spar elements.
Reference Solution: Nonlinear Analysis of Cable Structures under General Loadings, Adab, Shooshtari et al,
Finite Elements in Analysis and Design 73 (2103) 11-19.

The DyNoFlex solution used P-Delta and Large Displacement options (initial strain required for first iteration).

Result Case is the Wg + Preload

Result Case 2 is Wg + Preload + Concentrated Loads

Result Case 10 is a post-processes combination case: Case 2 — Case 1 to give the displacement due to the point
loads.

0.450

= i =
Wey

Ty Pri1.570E01
="

P1.570E01

Vertical Displacement at Node 19 = 33.34mm
Reference Solution.

Experiment 33.6mm
Analytical* 33.8, 34.00, 34.16 and 33.94

*Different investigators were quoted
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Example 3.3 Beams-Large Displacement-Tension Stiffening

Model: TrapezeWire

This example is a tensioned cable subjected to a concentrated mid-span load. The LHS is fixed and the RHS
simply supported

Length==15m; E Value =90GN ;Diameter= 10mm ;Coeff of Thermal Exp =1.1E-5.
Tension= 10kN
Load in centre span 850N.

The objective to establish the bending stress at the point of load application. The cable proportions are such
that the load is supported by cable tension with bending stiffness being virtually zero. However, at the point
of application load there will be local bending, and this could be significant with respect to cyclic loading
(fatigue).

The model used Tyep16 beams (P-6 effects based on stability functions). This model the require mesh
refinement in the vicinity of the load and LHS support (mesh sensitivity checks).

Case 3 used the 3-D Standard with P-Delta active and cable tension by force definition.
Case 7 used the 3-D Standard with P-Delta active and cable tension by thermal strain definition.
Case 100 used the 3-D Non-linear with P-Delta active and cable tension by force definition.

Reference Solution. The bending stress in a fixed ended cable at an angle & and with tension F, can be
evaluated using the following expression (French Stay Cable Standard).

Stress = 9.r(E.F/I1)**0.5 = 287.73MPa (8 obtained from simple statics or model & = W/2F)

-287.30 MPa

Bending Stress at load point =
-5a03MPa 287.3 MPa

_-0.01MPa_-0.04 MPa_-0.34 MP@3 MPLE MRE ;%ggﬁﬁf'ﬁ MEGG MP34 MPa_-0.04 MPa_-0.01 MPa

Case 7 uses DyNoFlex (Large Disp +PD) Cable tension due to deflected shape. Tension less, deflection higher
and bending stress higher (Bending Stress 311MPa) — considered more exact.
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Example 3.4 Beam Lift using a Pulley Element — Dynamic - P-Delta — Large Displacement.

Model: Pulley_BeamlLift

Dy1.000E-12 This solution traces the displacement of a 10m
EB}:.?W .
| beam, pinned at one (N1) end and supported
near mid span using an arrangement with a

running pulley.

The pulley is located at N9.

The only load is a 100 kN applied at the free
end of the beam.

A vertical prescribed displacement applied at
N10 moves the moves the pulley vertically
y-100.0kN

downward by 10m.
Reference Solution: Validated using Statics (Linear Static solution based on final configuration)).

A pulley by its nature is a mechanism and requires a dynamic solution to establish an equilibrium state.
Accordingly, the solution uses a DyNoFlex dynamic time history solution.

Result Case 2 is the initial state when the 100 kN is applied and the N10 is in its initial position.
Result Case 100 is the final state after N10 is moved vertically downward 10m.

s )
1

h This final state displacement plot shows the relative
movement of the pulley.

The initial and final tensions in the pulley bridle are
106.63kN and 84.33 kN.

The initial and final tensions in the pulley lifting cable

J \ are 172.15kN and 143.71 kN.

14364kd  The deformed geometry from the final
state was used to create a linear model
(Pully_Beam_Check.MOD). This gave the
following tensions.

Pulley lifting cable tension 143.64kN.
Average pulley bridle tension 84.43 kN.
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Example 4.1 Plastic Collapse of a Two Storey Frame — Frame Plasticity

Model: PL_Frame_1

The plastic collapse of this is based on the theory of “Perfect Plasticity”. With perfect plasticity the frame
member nodal joints behave elastically at moment load levels below the plastic moment limit. Above this limit
the member moment remains constant at that limit and the excess moment is either distributed to connected
elements, if possible or the collapse occurs. In FS2000 this called Frame Plasticity.

This model is a based on Example 14.7-2 from the book Structural Analysis (2nd Ed), Coates, Coutie & Kong. In

the book a load factor of 2 is found to produce plastic collapse of the structure.

o PI30.0KN, §|/Fy-15.0kN
Plastic Moment Limit = 67.29 kNm

The model has a batch file that will run 8 Combination Cases using the 3-D
=300k . Non-Linear Solver with LF = 1 to 2(1.99).

+ .

-67.30 KNm

The sequence of the formation of the plastic hinges is
indicated. When the 5™ hinge is formed the frame will
collapse.

5 am 67.30 kNm

Note that plastic interaction is not active. If it were, the
presence of axial load would reduce the moment

bise i, 2872 capacity. In this example Hinge 1 would reduce to 66,

only very slightly.

7.30 kNm 1

F52000 DynaFlex Model:PL_FRAME_1

0.104

This displacement plot obtained from a DyNoFlex solution shows the
horizontal displacement of the frame as the loading is stepped up to the
f— collapse loads.

FEET R

. 4 Hinges are shown and when the 5 is formed a mechanism is formed and the

o solution fails.

i}

oo 0505 1.000 1495 1.930
Time Step

Displacements Resull Case: 3 OpiNar 3 Node:2 Comprl
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Example 4.2 Plastic Collapse of a Four Storey Frame — Elastic-Plastic — Large Displacement

Model: PL_Frame_2

The plastic collapse of this is based on the theory of “Perfect Plasticity” combined with a large displacement

solution.

Reference Solution: Large Deformation Analysis of Elastic-Plastic Frames, Aslam Kassimali, Journal of Structural
Engineering, Vol 109, No 8, 1983, ASCE.

pr2 P Pr2
s 1 o N
s Columas : FS2000 Limiting Conditions
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W10x80 (Other Storles) )
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. Le - 12 ft (3.66 m) Tons ins
T
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Pys TRem I e = Prihder_ 10-0.1 22.4 3.66
5
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Example 4.3 Dynamic Response of Plastic Beam — Dynamic - Frame Plasticity

Model: DynPlastBeam

A simply supported undamped beam is subjected to a
suddenly applied load of 30 kips.
The beam mass is represented by a concentrated weight

120.000

120,000 of 10 kips located to the load point.

Am=45.3 kips

Beam Properties: E=30E3ksi; YST = 30ksi; | = 854.5ins* ; Depth=18ins;Zp = 90.6ins>.
wm=osa3m v The onset of perfect plasticity occurs a deflection of 0.5432ins due to a load of 45.3kips.
Reference Solution: J. M. Biggs, Introduction to Structural Dynamics, McGraw-Hill Book Co., Inc., New York, NY,
1964, pg. 69, article 2.7.

Note that this model cannot be run under load control because the model becomes a mechanism when the
plastic hinge is formed (kx=0). In a dynamic solution the mass provides stability (ma + kx = 0)

OYNOFLEX ANALYSIS

1 N
o fmoss \ S I W P Displacements
<03 = " uase g ¢
§ T
%
0 1
] Y] £ e 02 0.3 0.000 0.050 01m ?\:;[ﬂ n2m nzs 0300
Att=0.371 u=0.534(0.543) Reference solution shown in parentheses.
At t=0.669 u =0.808 (0.806)
Att=0.122 u=0.439 (0.338)
FS2000 DyNoFlex ModelDynPlasiEeam Moments

% / \ / \ Linear Solution Mwmax = 3600 kip-ins

: / \ / DAF = 2 for a suddenly applied load on an elastic
beam, Mstat 1800 kip-ins

F32000 DyMNoFlex Model:DynPlastBeam

3 / Plastic Solution Mwmax = 2718 kip-ins (Mp)

0.000 0.050 0100 0150 0.200 0.250 0.300
Time Step

Force Resul Case: 4 Optho: 4 Element 2 Comp: &
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Example 4.4 Dynamis Response of Plastic Pipe — Dynamic — Strain Plasticity

Model: DynPlastPipe

This is essentially the same as the previous beam
%\ example, but the plasticity is based on a defined bi-
z X “‘“\-ﬁi\

==
\‘i\;&y-au Okips
it

e

linear stress-strain curve.

= A simply supported undamped beam is subjected to
z a suddenly applied load of 30 kips. The beam mass
is represented by a concentrated weight of 10 kips
located to the load point.

Beam Properties: E=40.2E3ksi; YST = 30ksi; | = 630.7ins% OD=18ins; t=.289ins; Zp = 90.6ins>. Note the E value
was adjusted to give the same El value as the previous beam example.

The onset of perfect plasticity occurs a deflection of 0.5432ins due to a load of 45.3kips. This equates a strain
of 0.0745% at 30ksi. A Von-mises yield function is assumed.

00000
\\
e \ Att=0.66 u=0.7807 (0.806). This slightly less than the frame
plasticity solution but can be expected because the frame
P solution assumes a concentrated hinge point.
H : N
IE\ BT TELE 1% SR R F S f\S_
E i \\ Reference solution shown in parentheses.
E / A Att=0.371u =0.521(0.543)
T i \ \/ \ Att=0.669 u = 0.781 (0.806)
e | | N Att=0.122 u =0.4392(0.338
21,0000 ’ ’ . . .
o0t 0051 0100 0351 0200 00 0300
1 EEDE
S ’rl“a’ﬂ‘-;{“ﬁa Plastic Solution Muax = 2718 kip-ins (Ms)
B / 1 ! :
- ! : : .. - .
" e | \ { Ill, o The spread of plasticity across the section as the load reached
| — ’ '| Ff ‘\ H the plasticity limit can also be observed in the moment plot.
R
¢ 13D H {-i ey
0 !I i | E E \ )
' Y .-"‘ i Y :
® o oEns [ Sdend !
ﬂl_u-_u[,.ll. ..E ; -
/
.00 T T T . T
[ 1 amronm 120 1250 1A

Tims Siso
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Example 4.5 Pipe Cantilever Bending —Strain Plasticity

Model: PlastPipeMoment

The model represents a cantilever, 22m long, subjected to a vertical load at the tip (Type6(7) beam). The load
on the tip is gradually increased until the section becomes fully plastic, just above Mp. The loading is then
removed leaving the cantilever permanently deformed and a residual stress state. Material strain hardening is
present to prevent a mechanism being formed. A DyNoFlex (Material + Large Displacement) solution
employed. Note that the plots values are indicative of the shape not his solution.

Beam Properties: E=207GPa; YST = 448MPa; OD=323.9mm; t=24.3mm; Zp = 2.186E-3m3; Mp=979.3kNm.Stress-
Strain Curve: Ramberg-Osgood AlphaR=1.31 N=25.61. A Von-mises yield function is used.

Condition 1 Fea=1.1Mp Tip Vertical Load = 44.51kN based 22m offset

Section Plastic at all stress points. Max Stress 484.38MPa; Max Axial Strain 2.3108%. Plastic Axial Strain
2.076% Deflections Y=4.972m X=0.631 (Elastic 2.955m at Mp).

M =1046.47kNm [ (22-.631)*1.1*44.51kN=1046.25kNm ]

Stresss vs Dist from NA % Strain vs Dist from NA
600 25
X 400 15

(]

200 150 100 -50

50 100 150 200 200

Condition 2 F =0 and permanently deformed.
Max Residual Stress 167.3MPa; Outer Residual Stress 126.5MPa; Outer Residual Axial Strain 2.015%.
Moment=0 Tip Y Deflection 1.864m (Elastic Om)

B

Stresss vs Dist from NA % Strain vs Dist from NA

FS2000’s Moment-Curvature Utility can be used to evaluate stress strain histories (evaluation based only on
static equilibrium using defined curvature). The results obtained below show excellent agreement with those
from the above DyNoFlex solutions.

Condition 1 - Indicates a Stress of 485.57MPa for a strain of 2.31%. This occurs at a curvature of 0.1544 (strain
=C.rm =0.1544*0.1498=2.31% ). The moment is 1047.6kNm.

Condition 2 - A -ve curvature change of .01544 results in near zero moment 18kNm. This predicts an outer
stress of 137 MPa and a corresponding strain of 2.012%.

The curvature at the two conditions can also be estimated from nodal displacements using the ETABLE routine
which uses a quadratic curve fit interpolation near the support. A plot of ETable 3 for the two cases indicates
reasonable agreement.
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Example 4.6 Elasto-Plastic Analysis of an axially load bar.

Model: PlasticRod

The model shows the non-linear material response of a bar subjected to a cyclic end load. The model uses a

single Type 15 spar element. The loading in the element is due to prescribed end displacements.
Reference Solution: Trivial — Loading traces stress-strain curve.

Fieal Constent Table 2

Geometric Properties: Length 10mm, CSA = 1mm?

6DIEDS.

Material Properties: Bi-linear stress/strain curve. E
1E11 N/m2, Ep = E/S, Yield = 400MPa

4DEQE4 oot

me—ws <

O A W The model has two solutions one uses a kinematic

0000 000z 0004 06 000 0000 stri\rmf omd 0ms 008 0020 0022 0024 memory mOdeI (GeomType24).

memory model (GeomType22) and one uses an isotropic

The solution uses a DyNoFlex time history solution to produce the following incremental plastic response

curves.

FS52000 DynaFlex Madel FlasticRod F52000 DyNoFlex Madel PlasticRod
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BIEOT-
285612
1. BE 0
2.00E 05+
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2.04E08
4 0005+

3B2E0R-

6
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Tirm
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Tirne Step Shiess Result Case: 1 Opthor 1 Element 1 Comps 1

2800 2000 3800 4,000
e Step

Displacements Fiesul Caze: 1 Optho: 1 Node: 2 Comp: 1

End Displacement History

1.00E+09
8.00E+08
6.00E+08

5.00E+08
4.00E+08

0.00E+00
5 -0.0001 -0.00005 0.0001 0.00015
-1.00E-04 -5.00E45 0.00E+00

-2.00E+08

5.00E-05, 1.00E-04 1.50E-04

4-0UE+08

-6.00E+08

v

-1.00E+09

Axial Stress History (Kinematic)
Kinematic Response Isotropic Response

The following were obtained using 3-D Nonlinear at specific load points.

Point 1 2 3 4 5
Strain (x10E5) 1.4 -0.8 1.4 -0.8 0
Stress (Kin) MPa 600 -480 600 -480 320
Stress (Iso) Mpa 600 -800 920 -992 -192
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Example 4.7 Elasto-Plastic Analysis of Pressurised Pipe.

Model: PipePressureAxial

This model demonstrates axial and hoop interactions during axial load cycling above the VM plastic limits.
Reference Solution: See next example — 3-D solid element subject to same loading.

The model comprises of a single pipe element Type6(7). For each loading history the pressure is held constant
(+ve or -ve), and the axial load is cycled. The pipe (400mmOD, 5mmWall 10m long) material is Yield=448MPa,
E=207GPa, Ep=0.56GPa. The cyclic material model of a Type6(7) element is a bi-linear kinematic memory
model.

A pressure of 51.25Bar induces a hoop stress of 205MPa and an end cap stress of 98.67MPa. An axial force of
3.598MN induces an axial stress of 580MPa.

The batch file will run one complete reversed cycle for each of the loading (Time steps 1 to5).

The table below list the conditions at the end of Time Step 2.

Case No Hoop Stress MPa | Axial Stress MPa | Tot Acc Plastic True Wall Axial
(52.25Bar) (Load=3.598MN) | Wall Axial Strain % Stress MPa
Strain %

101 +205 +580 +27.298 28.12 +678.4

102 0 +580 +23.772%* 23.492 +580.0

103 +205 -580 -28.947 29.91 -481.04

104 -205 +580 +28.947 29.91 +481.04

105 -205 -580 -27.298 28.122 -678.4

* Eff Plastic Strain = TotStrain — EffStress/E = 23.772 - 580/207E3*100 = 23.492%

Styesseatrain Cycle

6.00E+08 This plot shows the true wall axial stress-strain cycle for Cases
4.00E+08 101, 102 and 104.
2.00E+08 ‘

For Case 102 The permanent plastic axial displacement is
2.351(23.49%). The corresponding hoop and radial strain

0.00E+00

-4 - 4
%2.00£+08 would each be 0.5%23.349% = 11.75%.
-6-00E+08
-8.00E+08
' /\ ' / | This shows the time history for Case 101

, @ 1 At the end of the cycle:

\ Axial stress = hoop end cap = 98.73(98.8)MPa

5 1 Displacement = 2.859m

: Acc Plastic Strain = 58.00%
; Total Strain=28.87%

oA 1.461
| \

-4 2.
0100 1328 3775 5,000 o100 1.328 3775 5.000

2550 2550
Time Step Time Step

Stress Result Case: 101 OptNo: 101 Element: 1 Comp: 1 Displacements Resul Case: 101 Optto: 101 Mode: 11 Comp: 1
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Example 4.8 Elasto-Plastic Analysis of 3-D Solid

Model: PipePressure3D

This model demonstrates 3-D plastic interactions of a Type 70 Solid element. The model a single 1m square
brick element. The model is loading using the same loading as the previous plastic pipe example.

The X axis represents the pipe axial direction.  Pressure Endcap Stress = 98.67MPa
Applied Axial Stress = 580Mpa

The Y axis represents the pipe hoop direct. Pressure Hoop Stress = 205MPa

The Z axis represents the radial pipe direction Zero — Plane Strain Condition

The model comprises of a single square brick element Type70. For each loading history the pressure is held
constant (+ve or -ve), and the axial load is cycled. The material is 448MPa, E=207GPa, Ep=0.56GPa. The cyclic
material model of a Type70 element is an isotropic memory model.

The table below list the conditions at the end of Time Step 2. Note that this is an isotropic memory model
therefore cycling beyond this point will produce a different response to that of a kinematic pipe especially at
these high strain levels with this tangent modulus.

Case No Hoop Stress MPa | Axial Stress MPa | Axial Strain % Acc Plastic True Wall Axial
(52.25Bar) (Load=5.598MN) Strain % Stress MPa

101 +205 +580 +26.6 27.86 +678.7

102 0 +580 +23.77* 23.49 +580

103 +205 -580 -27.56 29.00 -481.3

104 -205 +580 +27.56 29.00 +481.3

105 -205 -580 -26.6 27.86 -678.7

* Eff Plastic Strain = TotStrain — EffStress/E = 23.77 - 580/207E3*100 = 23.49%
The above strains are obtained form the ST files produced in batch by ETABLE

Shown below are the displacement plots for different load conditions at Time Step 2. The displacements are
predominately due to plastic flow. For Case 102 AX=23.77, AY=11.83 & AZ=11.83. This corresponds to an almost
overall effective Poisson ratio of 0.5 which is to be expected for plastic flow. If Case 102 is cycled to Time Step
5, the load is completely removed, only the plastic strains remain and the deflections are AX=23.49, AY=11.74 &
AZ=11.74.

The Res Plastic Strain in the above table compare favourably with those for the Type6(7) pipe considering the
pipe plastic formulation has only one independent variable (x) whereas the solid element has three independent

variables (x, y & z).
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Example 4.9 Plastic Collapse of a Suspension Structure — Elastic-Plastic-Large Displacement

Model: SuspensionStruct

The plastic collapse of this is based on the theory of “Perfect Plasticity” for beam action and non-linear cable
plasticity defined by a stress-strain curve. The paper did not specify the beam yield strength but an assumed
value of 35 ksi gave comparable results for plastic hinge formation.

Reference Solution: Inelastic Stiffened Suspension Space Structures, Journal of the Structural Division, Proc
ASCE, Vol 96 No ST6,1970.

i and 5.
240
T T T T T T T T 1 T
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Example 4.10 Elasto-Plastic Analysis of a Thick Cylinder Under Internal Pressure

Model: ThickCylinder

An infinitely long thick cylinder of internal and external radii 100 mm and 200 mm respectively is subject to an
increasing internal pressure. Twelve Type 30-8 node 2-D plane strain elements are used. The mesh is identical
to the reference solution (considered bit coarse). He next example uses Type 40 2-D Axisymmetric elements
with a more refined mesh.

Reference Solution: Owen, D.R.J., Hinton, E. Finite Elements in Plasticity: Theory and Practice
Publisher.Pineridge Press Ltd. Swansea, U.K. 1980. ISBN 0-906674-05-2

The plots below show the hoop stress as the pressure increases.
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The cylinder becomes fully plastic at 192 MPa.
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Example 4.11 Elasto-Plastic Analysis of a Thick Cylinder Under Internal Pressure

Model: ThickCylinderAxy

This is the same as the previous example. An infinitely long thick cylinder of internal and external radii 100 mm
and 200 mm respectively is subject to an increasing internal pressure. Type 40-8 node 2-D Axisymmetric
elements are used. The mesh is more refined than the previous model.

The bi-linear stress-strain curve has no strain hardening and collapse

Von-Mises and Hoop stress
at 180MPa — Case 4

DvNOFLEX AMALYEIS
7HIEM . . .
occurs at 192MPa. The Von-mises stress is at yield across the whole of
the section.
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P =80MPa

p =140 MPa

P = 192MPa (collapse)
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Example 4.12 Thermal-Elasto-Plastic Analysis of Pressurised Pipe.

Model: ThermalPlasticPipeBeam

This model demonstrates thermal axial expansion and hoop stress interactions in a pipe (400mmOD, 5mmWall
10m long) for loadings above the VM plastic limits. The pipe has an initial pressure of 75Bar and is 124.6C
above ambient which results in the VM stress being at yield. The temperature is then increased from ambient
to level that produce stress levels above the VM plastic limit.

The model comprises of a single pipe element Type6(7) and represents a section of pipe between fully fixed
anchors. Pipe material properties: Yield=448MPa; E=207GPa; Ep=0.56GPa; a =1.17E-5.

Theory: Below yield (Roark). Above yield, the same pipe is modelled in the next example using solid elements.
Hoop Stress due to pressure Sh = Ap.Do/2t =300 MPa.

Axial Stress due to pressure Sap = p Ap.2r?/(R?-r?) = 86.64 MPa

Von-Mises stress due to pressure = SQRT(Sh? + Sa? — Sa.Sh) = 267.4 MPa

Axial Stress due to thermal expansion = Sat = a.AT.E = -301.8MPa

True wall axial stress = Sa = Sap + Sat =-211.8 MPa

Von-Mises stress due to pressure & expansion = SQRT(Sh? + Sa? — Sa.Sh) = 448.1 MPa

At a temperature of 124.6C the pipe wall Von-Mises stress equals the material yield limit.

Cases 1 to 3 are 3-D Standard linear solutions. Case 100 is a DyNoFlex (C100) solution. Pressure is applied and
then the temperature is ramped up to a value of 10 time the temperature that produces yield i.e. 1246C
(mechanical properties are constant). Case 10 is a DyNoFlex (L10) that ramps up only the temperature.

It should be noted that hoop strain in Type 6 beam elements is not an independent variable and accordingly it
should never have a value greater than yield when undertaking plasticity solutions.

The table below shows exact agreement with the above theoretical values for load levels below yield.

Case No | Press Bar | Temp C | Hoop Stress MPa | Axial Stress MPa | VM Stress MPa | Acc Plast Strain
1 75 0 300 86.63M 267.4 0
2 0 124.6 0 -301.8 301.8 0
3 75 124.6 300 -215.1 448.1 0
100 75 1246 300 -228.76 459 1.56%
10 0 1246 0 -455.0 455.0 1.238%
101 100 1246 400 -108.1 464 1.979%

F52000 DyMNoFlex Model Themmal_PlasticPipeBeam

453

4.13E08+

IETEDRS -
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4 B3E07

0.00E0D:

0.000

Stress Result Case: 100 OptNe: 100 Element 1 Comp: 13
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Time: Step

8.000 10.000

This plot shows the VM stress as a function of temperature.
At t=0 the stress is that due to pressure alone 267.4MPa.
At t=1 the point where the temperature is 1246C the VM stress reaches

448MPa, the yield limit. Further increase in temperature produces plastic
flow. The VM stress increases slightly due to strain hardening. If there were

no strain hardening the VM stress would remain constant.

* This hoop stress is evaluate using the a hoop stress based on Ap.(Do-t)/2t

(hoop Stress option in GUI) which is also used in DyNoFlex.
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Example 4.13 Thermal-Elasto-Plastic Analysis of Pressurised Pipe.

Model: ThermalPlasticPipe

This model demonstrates thermal axial expansion and hoop stress interactions in a thin wall pipe (400mmOD,
SmmWall 10m long) for loadings above the VM plastic limits. This is the same as the previous example. The
pipe has an initial pressure of 75Bar and is 124.6C above ambient which results in the VM stress being at yield.
The temperature is then increased from ambient to level that produce stress levels above the VM plastic limit.

The model comprises of a single Type 40, 8 Node Axisymmetric 2-D solid element and represents a section of
pipe between fully fixed anchors. Pipe material properties: Yield=448MPa; E=207GPa; Ep=0.56GPa; o =1.17E-5.

At a temperature of 124.6C the pipe wall Von-Mises stress equals the material yield limit (Case 3).

Cases 1 to 3 are 3-D Standard linear solutions. Case 100 is a DyNoFlex (C100) solution. Pressure is applied and
then the temperature is ramped up to a value of 10 time the temperature that produces yield i.e. 1246C
(mechanical properties are constant). Case 10 and 11 are DyNoFlex cases that ramps up only the temperature
and pressure alone.

e
=t A =i
l:|458 7 I:IE.SSE-DB
4567 5 26602
l:|458 7 I:IE.SSE-DB
l:|458 7 I:IE.S?E-DB
4567 | . 5 36E 02 [ .
= -
M ax 4568 kax E.0TE-03
Mir 456.7 Iin 5.95E-03
A
Case 100 Von-Mises Stress Case 100 Radial Deflection
Case Press Temp Hoop Stress Axial Stress VM Stress Acc Plast Defln
No Bar C MPa MPa MPa Strain Radial
1 75 0 288.8-296.2 86.6 256.6-269.3 0 .257
2 0 124.6 0 301.8 301.8 0 .379
3 75 124.6 288.7-296.2 215 437.9-445.5 0 0.633
100 75 1246 291.7-293.3 232.5-234.5 456.7-456.8 1.552-1.568 6.013
10 0 1246 0 455 455 1.238 4.286
11 180 0 699.7-704.3 352-359 613-618 29.4-30.3 52.39
101 100 1246 390-391 113-114.7 459 2-2.02 7.16
Reference Solution ANSYS (STIFF82 Axy)
Case Press Temp Hoop Stress Axial Stress VM Stress MPa Acc Plast Defln
No Bar C MPa MPa Strain
3 75 124.6 289-296 215 438-445 0 0.633
100 75 1246 292-293 233-235 457 1.566-1.583 | 6.059
10 0 1246 0 455 455 1.238 4.286
11 180 0 700-704 342-350 613-618 29.4-30.3 52.37
101 100 1246 390 113-115 459 2-2.03 7.2
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Example 4.14 Thermal-Elasto-Plastic Analysis of Pressurised Pipe.

Model: ThermalPlasticPipePS

This model demonstrates thermal axial expansion and hoop stress interactions in a thin wall pipe (400mmOD,
SmmWall 10m long) for loadings above the VM plastic limits. This is the same as the previous example. The
pipe has an initial pressure of 75Bar and is 124.6C above ambient which results in the VM stress being at yield.
The temperature is then increased from ambient to level that produce stress levels above the VM plastic limit.

The model comprises of Type 30, 8 Node Plain Strain 2-D solid element and represents a section of pipe
between fully fixed anchors. % symmetry is assumed. A single element width represents the wall thickness.

Pipe material properties: Yield=448MPa; E=207GPa; Ep=0.56GPa; a =1.17E-5.
At a temperature of 124.6C the pipe wall Von-Mises stress equals the material yield limit (Case 3).
The results obtained are almost identical to the single axisymmetric model.

== Sy S5 Eazen

Won-Mises

Min 4435

L Z X

Z X

Deflections Sc 1.0 Max=6.533mm at Node 80

Case 100 Von-Mises Stress Case 100 Radial Deflection

Case Press Temp Hoop Stress Axial Stress VM Stress Acc Plast Defln
No Bar C MPa MPa MPa Strain Radial
1 75 0 288.6-296.6 86.6 256.3-269.9 0 0.257
2 0 124.6 0 301.8 301.8 0 0.379
3 75 124.6 288.6-296.6 215.1 437.7-445.9 0 0.633
100 75 1246 291.9-292.8 224.2-226 449.5-450 1.476% 6.53
10 0 1246 0 -455.0 455.0 1.235% 5.16
11 180 699.2-704.1 352.2-359.9 612.5-618.3 29.44-30.32 | 52.417
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Example 4.15 Elasto-Plastic Collapse of a Square Beam-Shell Elements

Model: PlasticBeam1 (PlasticBeam2)

This model evaluates the elasto-plastic collapse of a simply supported solid square section beam subjected a
UDL. The beam span is 1m and the section width/depth is 100mm. The total load on the beam is a UDL. The
model uses Type 52 4-Node Shell Elements This represents a very thick shell aspect ratio. Model PlasticBeam2
also models the same beam using Type 30 2-D Plane stress elements for the in-plane loading Cases 1 & 2.

Ideal plasticity is assumed.
Beam Properties: E=205GPa; Poiss=0.3; YST = 300MPa.

Reference Solution: Basic Beam Theory.

| =bd3/12 = 8.333E-6 m*; Elast Modulus=1.6667E-4 m3; Plastic Mod=2.5E-4 m?3 T
Yield Moment=50 kNm; Yield Load=8M/L = 400kN
Plastic Moment = 75 kNm; Plastic Load = 600kN. .

The plots below are for un-averaged stresses. : _ |

Case 1 In-Plane Linear Elastic Load Factor = 1.0

VanHises E wm

Max Elastic stress at yield

Case 2 In-Plane Plastic Load Factor = 1.49

YorMises

§ Plasticity spreading through beam depth

Min 250

Case 3 Out of Plane Linear Elastic Load Factor = 1.0

Warises

g Top Surface: Max Elastic stress at yield

Min 335

Case4 Out of Plane Plastic Load Factor=1.5

Top Surface: Plasticity spreading along beam
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Example 4.16 Elasto-Plastic Collapse of a Square Beam-2D & 3D Solids

Model: PlasticBeam2 & PlasticBeam3

This model evaluates the elasto-plastic collapse of a simply supported solid square section beam subjected a
UDL. The beam span is 1m and the section width/depth is 100mm. The total load on the beam is a UDL.
PlasticBeam2 uses Type 30 2-D Plane stress elements.

PlasticBeam3 uses Type 70 3-D Hex elements. The aspect ratio of the hex elements is suited only for stress
variation in the X direction (vertical load) for a non-linear plastic solution. A linear solution in the lateral
direction (Case 3) does however give the same results as that for the vertical direction.

This is the same as the previous example. Yield Load Limit=400kN. Plastic Load Limit(LF=1.5) = 600kN

Both models have two load cases each applied the vertical Y direction. Case 1 is linear elastic to the yield limit
and Case 2 is at the plastic limit.

Sn-Direct

Case 1 Max X stress at 400kN = 300.9MPa

Min -2005

Vonises

Case2 Von-Mises at 600kN = 300MPa

Min24.6

SwDirect

P SRR G Case 1Max X stress at 400kN = 209.9MPa

Min-295.9

Won-Mises

Min 24 4

Case 2 Von-Mises at 600kN = 300MPa

Linearised Stress Plots Linearised Stress Plots

450, 5

» X Direction Stress from the 2-D model at mid span.

225
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Case 1 Linear Variation 300MPa Yield at Top & Bottom

Case 2 Stresses at Yield thru section at Plastic Limit
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225

300,

450, 450,

0000 0025 0075 0100 0.000 0025 0050 0.075 0100
Di s Distance Between Nodes

0.050
itance Belween Node:

Model PlasticBeam? Sestion bstwesn Node31 & Nodeas? Model PlasticBeam2 Section between Node31 & Node337

Verification Examples Page 56



FS2000 Analysis

Example 4.17 Elasto-Plastic Collapse of a K-Braced Frame

Model: KBracedSTST

This model assesses the elasto-plastic collapse of a K-Braced frame. The model is based on a test frame that
was loaded to its ultimate capacity. (T. Moan et al, “Collapse Behaviour of Trusswork Steel Platforms”,
Behaviour of Offshore Structure, 1985). Full material details are not available in the paper but sufficient are
given to create a similar model and undertake a solution with surprisingly good correlation.

The beam elements used are Type 6(7). The Geom Type 7 is a
%‘5{ T bi-linear stress-strain material model. The stress-strain data is
% based on E=205GPa, YST=345 MPa and UTS is 490MPa at 30%

strain.

4
0

=T

This type of failure frame produces a negative effective

stiffness matrix (mechanism formed) and cannot be solved by

load control. The loading is applied as a prescribed

displacement, applied through a load monitoring tension only
i + couple.

The predicted collapse of 636 kN load compared well with the
reported results.

An Eigen buckling solution is also undertaken. This predicted a
buckling load of 590 kN (0.987 LF).

“ !
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Note that the FS2000 plot is Force vs Time Step and not Force vs Displacement (slope sign different on
reversal)
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Example 4.18 Elasto-Plastic Collapse of a Deep | Beam

Model: Plate_I_Beam

This model investigates the elasto-plastic collapse of a simply supported symmetric | Beam subjected to a
concentrated mid span load (598.5kN). The beam span is 4m.

Depth=600mm: Width=180mm

Flange=10mm: Web=8mm

E=210GPa: Poiss=0.3; Yield=345MPa;Et=3E8

Von-Mises yield criteria

The beam model uses Type 52 shell elements. Half model symmetry.
The base case loading is the section plastic moment i.e. LF=1.0 gives the
Plastic Moment = 598.5 kNm. Elastic moment = 509.9 kNm (SF=1.174).

Reference Solution: LT Beam & Basic Plastic Beam Theory.

Case 1 Linear Elastic (Linear Solver)
Maximum Flange Stress=444.3MPa (Implies a plastic shape factor of 1.29)
Deflection=10.08mm

Enpe
e R | Case 2 Plastic

/[\ .é%zli - e ~ Solution fails at LF=1.02 due to plastic yielding.
% ii""!! ﬁi‘%’ f _ Max Von-Mises = 345.1 MPa -Spread across flanges outer
e ﬂ.';i;!iill!niim.ail . web section. Perfects plasticity make full section plasticity

. Wl eppe .
#**’d!jjii difficult to achieve.
\' Max Deflection (top flange) =12.9 mm Vertical

T Case 3 Elastic Large Displacement

Excessive lateral deflection at LF=0.78 due to elastic lateral
buckling.

I Max Von-Mises=345MPa

e

: Max Deflection:7.809mm Vertical:0.76mm Lateral
/" LT Beam gives Mc=436.93kNm (LF=0.73)

Case 4 Plastic Large Displacement

Solution Fails at LF=0.62 due to plastic flange bending.
Maximum Von-Mises = 346MPa
Deflection (Top flange): 6.3mm Vertical 7.4mm Lateral
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Example 4.19 Elasto-Plastic Soil Foundation

Model: SoilBearing

This model evaluates the vertical bearing capacity factors (Nc) of smooth strip foundation footing using a
Mohr-Coulomb plasticity model. The model uses 2-D 8Node plane strain elements. To avoid numerical
instabilities the solution employs a displacement-controlled approach.

The bearing load is applied using prescribed displacements
(Case 4). These are applied through Type 12 contact
elements. The vertical restraint also uses node to ground

contact elements. These contact elements are used solely

for convenient load monitoring purposes. q used below is

| || the couple reaction summation.

T

i E=2E5kN/m?; Poiss =0.3 Cohesion= 20 kN/m?
‘- To evaluate Nc the spoil is assumed to be weightless.
Foundation widthw=1.4

™
=

LR RN

Reference Solution: “Computation of vertical bearing
factors Nc of strip footing by FEM” Phuor Ty et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 527 012017.

This plot of load contact is for a friction angle of 15, it shows that the bearing pressure due to the prescribed
displacement has reached a maximum. Nc=g/c.w = 310E3/1.4/20E3 = 11.07 q=reaction summation

The displacement vector plot shows the typical orientation of the slip planes.

FS2000 DyMoFlex Model:SoilBearing

115ED4 \

i
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W
: f%/?
: 22408 s % 4 ,\4
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' \ \ b///jyﬁ/y/j
’ \ e e
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e | —] e
0100 5075 m\\:g's!ap 15025 20,000 & \ S e ‘///// R e
Foices Resul Case 4 OpiNo: & Couple: 52 Compt 1 [ e o
|\ & k I\L\| v S = v

Table from reference solution.

Autho Method Soil friction angle ¢ (degree) ) | d B
A s vethods
5 T 5 5= % = o = FS2000 evaluated Ncfactors.
il Friction Nc
fgri‘l'd[‘i] ‘i‘:hhj; 649 | 8.35 | 1098 | 1483 | 2072 | 30.14 | 4612 | 75.31 | 133.88 ¢
- ~ = — 5 6.55
erzaghi, — 7 2 7 25 7 77 722
1943 11] | equilibruim | 734 | 961 | 1286 | 1769 | 2513 | 3716 | 57.75 | 9566 | 17228 15 11.07
Upper
f';;‘;’i?] bound 65 | 836 | 1090 | 1486 | 20.77 | 30.24 | 4633 | 75.77 | 134.99 25 20.91
analysis 35 46.54
Present Finite 657 843 11.03 1464 2039 2944 4364 68.67 103.73
analysis | element | (6.73) | (8.52) | (1110) | (1468) | (2032) | (29.14) | (44.28) | (67.91) | (107.59) 45 109.31
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Example 5.1 Natural Frequencies of a Beam — Beam Elements

Model: CantileverFreq
This example evaluates the first three natural frequencies of a solid rectangular steel beam due to self-weight.
Two support conditions are considered. Cantilevered and fully fixed at both ends.

50mm Square section

%-ﬁmﬁ%aﬁ? | = 5.208E-7m*
‘h%ﬁ?ﬂﬁ? A=2.5E-3m?
E= 205GPa
L=3m
'ﬁg&m1g Density = 7860kg/m?3

Reference Solution: “Vibration Theory and Applications”, W.T.Thomson, Prentice-Hall Inc, 1965, page 275.

The refence solution values are shown in parentheses.

Condition 1 Mode Rad/s 2" Mode Rad/s 39 Mode Rad/s
Cantilevered 28.79 (28.8) 180.23 (183) 503.77 (505)
Fully Fixed 182.88 (183) 505.95 (505) 983.04 (991)

Cantilever Mode Shapes

I
R

N
A /
e

W Fully fixed Mode Shapes
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Example 5.2 Triangular Wing Eigen Values — Shell Elements

Model: Triangular Wing

The example evaluates the natural frequencies of a triangular wing.

%
%

A A A A The length and width are 6 ins. Thickness = 0.034 ins.

E =6.5E3 ksi; v = 0.3541; p = 0.166E-3 |b.sec?/ins*

The model uses Type 50 3-Node shell elements.

The mass case is self-generated.

Reference Solution: “ASME Pressure vessel and Piping 1972 Computer Programs Verification” ed IS Tuba and
WB Wright, ASME Publication |-24, Problem 2.

The refence solution values are shown in parentheses are from a COSMOS examples using quads for the same
6.problem.

First Mode 55.42 Hz (55.4)

Z X
Freqg= 55.421Hz( 0.018 Secs)in Mode 1

Second Mode 205.29 Hz (205.3)

Third Mode 282.35 Hz (282.3)

Freq= 282.346Hz( 0.004 Secs)in Mode 3
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Example 5.3 Period of a Pendulum — Dynamic — Large Displacement.

Model: Pendulum_Dyn_LD

The model comprises of a single massless Type 6 beam element. The beam is hinged at the top and has
concentrated mass at the free end. The starting position of the beam is at 90 degrees. A time history solution
starts with mass being released from the 9 0’clock position. The time history runs for about 12 cycles.

The natural period of a swinging pendulum is a function of both length and amplitude.

f'? For small amplitudes << 1 Degree this formular is often used.

Vll For a 1m long pendulum with amplitude of 90 degrees the small displacement solution
is 2.006s

jh ::Eﬂ

AT, For larger amplitudes this formula may be used.

+ For a 1m long pendulum with amplitude of 90 degrees the large displacement

2
(1 + 1/ cos %) solution is 2.368s.

DYNOFLER ANALYSIS

N
N - The time displacement shows a period very closely in the
! / region 2.368s.
E \ j
; \\ ﬂ’ The periodic motion is not sinusoidal.
i Y 7
N\ ~

0000 023 10474 1070 I0SAT 4B 11421 18 fi8m 1243 {238
TIHE

If the initial position is changed from 90 degrees to 5 degrees, the is following obtained.

DYNOFLEX ANALYSIS

o The time displacement shows a period very closely in the

o region of 2s and the motion appears sinusoidal.

—zmzImorroe—o

10000 10200 10400 10600 10800 11000 11200 11400 11600 11800 12000
TIME

Time History - SoluionMoritor 1 1

Eigen Frequency Solution

Case 2 (Gravity applied in the X direction) is a small displacement Eigen solution. This gives:

Mode

First Mode:Exact agreement with the
small disp. analytical formula.
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Example 5.4 Harmonic (Modal) Response of Two Mass Spring System

Model: HarmonicResp1
This model determines the dynamic response amplitudes of two masses when excited by a harmonic force.

Fi gin o m1=m2=0.5 |b-sec?/ins

Fex - =i k1=k2=k3=200 Ib/ins

s K F1= 200 Ibs

The model uses unit length beam elements to model the springs (A=1; E=200).

ka

The solution is obtained by first determining the natural frequencies and then undertaking a modal response
solution.

Reference Solution: “Vibration Theory and Applications”, W.T.Thomson, Prentice-Hall Inc, 1965, Exp 6.6-1,page
178. The refence solution values are shown in parentheses.

Frequency Solution 1t mode = 3.183Hz (3.183) 2nd Mode = 5.5132 Hz(5.513 )

Response at specific frequencies.
The values are shown in parentheses are from an ANSYS verification example.

Freq Hz | X1 Phase | X2 Phase
1.5 0.8227 (0.8227) 0 0.4627 (0.47274) | O

4 0.5115 (0.51145) | 180 1.215 (1.2153) 180
6.5 0.5851 (0.58512) | 180 0.2697(0.26965 | O

The response is obtained for a frequency range of 0 to 7.5 Hz as shown below. Also shown below are the
displacement response at a frequency of 6.5 Hz and the forces in the springs at 6.5 Hz.

Harmanic Freq Response HarmonicRespl:Harmonic Time Response Case No:2 Harmanic Time Respanse

0.584

1706315

2615164 0.2320 a5.31634

Aﬁm‘j
JE—

17.43434 0.0000

0.00504

wza—~oa
so-—~oa
@ao-o

8.71814 -0.2920:

-85.30834

T T T A
0.000 1875 am 5625 50 0,000 00 0075 03 018 706215
Forcing Frequency (Hz) Time(s) Excitation Freq at 6.5 Hz 0.000 0038 007 0113 0151

HammonicRespl:Respanse Case Noi2 HarmanicResp Aespanse Case Nor2 Time{s] Excitation Freq at 85 Hz

HameonicRespl:Response Case No2
The model solution also included an results case (FCASE) at 0.1168s for the 6.5Hz excitation.

DyNoFlex Time History Solution

A solution was also undertaken using a DyNoFlex time history solution (in Batch). This gave similar results but
did include a small contribution from the initial transient solution during the ramping up of the sinusoidal
force.
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Example 5 5 Transient Response of Viscous Damped System

Model: DampedVibration

The model evaluates the natural frequencies and response of a damped system with varying levels of damping.

A b ﬁ a=3m;b=4m
P ‘ k = 40kN/m
A j"n\ m = 1 Tonnes
¢ k The beam is massless and is relatively stiff to behave as a rigid bar.

o v
%75 ~ The model has two load cases: Case 1 is the mass case; Case 2 is a

-
T ;(5)’_ (27::). € =2 VKM 105N load applies at the free end.

Reference Solution:“Vibration Theory and Applications”, W.T.Thomson, Prentice-Hall Inc, 1965, Exp 13,page
49. From the refence solution so following table can be constructed.

Damping % Crit | 75 50 25 15 10 5 0
Cc kN-s/m 12.65 | 8.433 4.216 2.530 1.687 0.843 -
Nat Freq Rad/s | 5.578 | 7.303 8.165 8.337 8.390 8.422 8.433
Nat Freq s 1.126 | 0.860 0.695 0.754 0.749 0.746 0.745

Case 1 Eigen frequency solution - First mode = 8.4306 Rad/s (8.433)

Case 2 A static solution gives results in a deflection of 250mm at the load point (10E3/40E3).
Case 10 Dynamic Solution Load Case 2 suddenly applied — Modal Response.

Case 11 Dynamic Solution Load Case 2 suddenly applied — Incremental Time History (DyNoFlex)

Case 10 75% Critical Damping Case 10 15% Critical Damping

Transient Time Response
Transient Time Response

\ \ 0 \ The model uses At=0.01, time step
:D‘ \ 21 \ Peak for 75% Damping occurs at t=0.57s
R \ y=256.958mm (0.563s)

/ ' f o \ / \ Peak for 15% Damping occurs at t =0.39s

L o e : ~

P [ / y=404.955mm (0.377s)
:U s \ The theoretical reduction in the natural
. N period due to increased damping agrees well
R .E. with that from the modal response solution.

0000 0250 0500 0750 1.000 1.250 1.500 1.750 2000 0000 0250 0500 0750 1.000 1.250 1500 1.750 2.000
Time [secs) 5)

DampedhibrationResponse Case No10 Dampedyibration:Response

Case Noi10

Case 11 Produced almost the same response.
The incremental solution uses a At=0.01, time step
Peak for 75% Damping occurs at t=0.57s y=257.1mm (0.563s)

Peak for 15% Damping occurs at t=0.38s y=404.9mm (0.377s)
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Example 5.6 Pile Driving Impact — Wave Propagation - Modal Response

Model: Pilelmpact

This is a model of a concrete pile subjected to a hammer blow. The hammer blow is represented by a half sine
impulse. The model shows axial wave propagation as the stress wave moves down the pile.

| o Wave propagation velocity = Vw = (E/p)®® = (3E6*386/8.681E-2)
I Assumed sine pulse =115.5E3 ins/s
! b{lm Length of half sine impulse = 115.5E3*0.005 = 577.5 ins.
J I
=100 l}__'l 0,008 sec —| 51 elements in the pile will give just over 24 elements in half wave,
Concrete pile: £ =3 10¢psi enough to capture the response.
Y= 1505y
L The pile nodes are only free in the y direction and the tip is fixed.

Reference Solution: Clough & Penzien, Dynamics of Structures, McGraw-Hill 1975, Example E19-5.

The IMPULSE command is used to apply a nodal load in the Y direction at the top of the pile.
IMPULSE,4,0.005,0,20,2,-6.000E05,2

The time take for the pulse to move from the head to the tip = 1200/Vw = 0.01038s. Because the tip is fixed,
the pulse will then start being reflected from the tip and become a maximum at t = 0.1038+577.5/115E3 =
0.129s. The tip is rigid therefore the maximum will be double the wave load in the pile to 1200 kips. The
reflected wave will travel back up the pile with no loss of energy.

..-.LU._.._.L—L'L—

T=0.005s t=0.01038s t=0.0129s t=0.0170
Wave fully in pile Wave just reaching tip Wave reflecting Wave travelling back up
599.96 kips 601.9 kips 1197.69 kips 602.55 kips

It is interesting to note that when the wave reaches the head which is free, the wave will be reflected as a
tensile stress (Case 13). Similarly, if the tip support was very soft the wave would be reflected as a tensile

stress.

A DyNoFlex incremental solution (Case 20, t=0.0129) produces the same results at the above.
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Example 5.7 Seismic Response (Modal Spectrum) of a Three Storey Frame.

Model: SeismicResp_Cant

The model undertakes the response spectrum analysis of tower type structure with an offset. The solution
uses an Eigen solver and the Seismic Response module.

m £ 2m
T 7 €)' =~ E-306ks
- L 1 | = 38.4 ins*
l— FI . L=240ins
L m = 0.01 kips-sec™/}t m =322 Lbs/g
El ,
i 1 kipdfi
£ =0.05

Reference Solution: Clough & Penzien, Dynamics of Structures, McGraw-Hill 1975, Example E26-5.
The refence solution values are shown in parentheses.

The spectral accelerations corresponding the two modes are : 8.89 and 42.15 ft/s? respectively (obtained from
the response spectra from the reference for 5% damping).

Response Spectrum Curve

Period (Secs) Value
0.372 Z85.8000
—————— 1.143 10€.€800

Response Spectrum Curve - Modal Points
Curve Factor 1

Mode Period (Secs) Dispiins) Veloecitylins/s) Rccel(ins/sZ)
1 1.144 3.53€l 13.4225 10€.€800
2 0.373 1.0153 17.1815 229 _8075

Total Mass (excl mass on rest.) 2.500E+00 Load Case Mass 2Z_.500E+00
Excitation ¥ Direction 1

Mode Fregq Freg Feriod Modal Cumilative Damping
No Rad/s Hertz Seconds Eff Mass E£ff Mass £ Ratio

1 5.45 0.87 1.1435% 5.4€8E-01 5.4€2E-01 21.87 0.05

2 1€.8¢€ 2_€8 0.3728 1.353E+00 2.500E+00 100.00 0.05

The SRSS reactions are:
Vertical 0.26 kips (0.26)

Horizontal 0.57 kips (0.57)

0.57 kips
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Example 5.8 Seismic Response (Modal Spectrum) of a Three Storey Frame.

Model: SeismicResp_Frame

The model undertakes the response spectrum analysis of three storey frame represented by an equivalent

three beam structure. The solution uses an Eigen solver and the Seismic Response module.

Reference Sol’n: Biggs J.M, “Introduction to Structural Dynamics! McGraw-Hill Book Co.,1964, page 266-269.
The refence solution values are shown in parentheses (slide rule accuracy).

r!

= v va 4 "J e kipl-unzlu.
12¢ = 500 kips/in.
1©) Ky
M = 8 kipa-sec’/in, A\ -
- ealized
== ,[ﬂ K, = 1000 kips/in. e /:‘,:,';g“
HE (E! Centro}
Bi M) = 8 kips-sec?/in. S
SEAOC (a1
X; = 1500 kips/in. =
£ = 4
12! o8
©
= . 7 X - o 010
(a) ® T001 0025008 04 025 05 10 25 [
¥, eps
G 2-30%106 pet, A =apm .0 e T, T e R
tl- 12. lji 144 in. recommendstion.
Il = 12442 in? , IZ = 8294 in? . Iy m a7 inﬂ Response Spectrum Curve
Pericd (Secs) Value
0.123 o_oLoo
. 0.500 1.€500
7 Modal Frequencies 2,515 5.3000
100.000 2.32000
/ Mode 1 0997 (100) HZ Response Spectrum Curve - Modal Points
Curve Factor 1
Mode Period (Secs) Displins) Welocityi{ins/s)
Mode 2 2.179 (2.18)Hz 1 1.003 3.3110 20.7380 129.3885%
2 0.45%5 1.4712 20.1441 275.8252
3 0.215 0.243% 1e.8410 32E.0773
MOde 3 3176 (318) HZ Total Mass (excl mass on rest.) Z.000E+04 Load Case Mass 2.
Excitation ¥ Direction 1
Hode Freg Freg Period Modal Cumulative
Ho Rad/s Hertz Seconds Eff Mass Eff Mass %
1 €.26 1.00 1.0032 1.€33E+04 1.€33E+04 24.17
2 13.€53 2.13 0.458% 2_000E+03 1.333E+04 94.17
3 19.9¢ 3.1% 0.214% 1.1€€E+02 2.000E+04 100.00
Displacements (ins) Shear Force (kips)
Node ABS RMS Element | ABS RMS
2 2.087 (2.01) 1.526 (1.5) 1 3130 (3020) 2288 (2250)
3 3.734(4.09) 3.213 (3.24) 2 2170(2080) 1784 (1740)
4 5.462 (6.78) 4.701(5.03) 3 1411 (1345) 923(895)

Node 4 ABS acceleration 352 (338) ins/s?

Node 4 RMS acceleration 231 (225) ins/s?
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Example 5.9 Seismic Response (Modal Time History) of a 5 Storey Frame

Model: Earthquake

The model undertakes a time history model response analysis of a five-storey frame
represented by an equivalent five beam structure. The model is subjected to ground
accelerations define by a g acceleration record (ElCentro N-S).

o4
03
02
o1 +
00 b
a1
02 4+
034 H R
0.4 t t t t t

Acceleration []

Max : -0.31882 (2.02 sec) Time [sez]

Floor Mass = 100 kips/g at all floors.

Floor Stiffness = 31.54 kips/ins

Column rotation at each floor is zero. Column height = 144ins
E =29.5E3 ksi; Equiv | =125.2 ins* Damping = 5%

Reference Solution: Chopra A. K., “Dynamic of Structures, Theory and Application to Earthquake Engineering”,
Prentice-Hall, 1995.

& 40 327 1ol
Natural Modes (Seconds): 2, 0.685, 0.435, 0.338 and 0.297. 2 OWW‘\T‘%“&
-4
. . 1] 5 10 15
Maximum Top Storey Shear = 35 kips (35.217) Time, sec
Maximum Base Shear = 73 kips (73.278) 2 75 J3.218
=
Maximum Top Storey Displacment 6.827 (6.847) < 0
15
0 5 10 15
Time, sec
e \ Z T
; i “\ N \\ \ . f i
151 1 4
F I [ \ | | L a4 A N H /\] | \ f \ A
. AT A | Lo L £ o2 N [ I P A
S o R AL TA I L R T A i’ P o
. R R A Cob BN : o R
v L1 AR iy LN s Vo AR
b s A W [ | i | Lo I al R R O A A Y LN
2 [Inl al o 1) | E by L Loy
I \f | ! . 1] L V] Voo
o= I ! o \ Voo |
5 ; |
0000 1000 2000 3000 4000 5000 6000 7D$Elme[§]ﬂﬂﬂ 9000 10000 11.000 12.000 13.000 14000 15000 v 0000 1000 2000 3000 4000 5000 6000 7['?‘[:“2[215'“” 9000 10000 11000 12000 13000 14000 15000
we] 8 6.847
g
223234 _: 0
o / ¢ 'J WY b&VﬂU&Vq
- / ' 0 5 10 15
p / Time, sec
sor /

0000 1000 2000 3000 4000 S000 BO00 7000 G000 9000 10000 11000 12000 13000 14000 15000
Time [2e2)

EathquskeRespanss Cass Mo 10

Verification Examples Page 68



FS2000 Analysis

Example 5.10 Beams-Dynamic Large Displacement

Model: FixedBeam

This example is a built-in beam subjected to a concentrated load being suddenly applied at centre span. The
model uses 10 Type 6 beams and a FS-DyNoFlex solution.

The reference solution is from:
Shock and Vibration Volume 2023, Article ID 6675678, 30 pages.
Corotational Finite Element Dynamic Analysis of Space Frames with Geometrically Nonlinear Behaviour Based on Tait-Bryan Angles

| K} 08
! [
g 08
3 E 0 |-
iol ;
T g
B o7 E
A 4
3 0s - 04 |-
= i
# 05 g o3|-
F X
3 I}
ERT k|
=
= g 02
= 03 [
I
2 02 =
o 1
; - : . . h m ! ! ! ! ! ! ' ' !
] i) 000z 0003 0004 0.o0s ] 0001 0002 003 0004 0005 00de 0007 000E  000% 001
time s} time {5}
—— Maondiar and Powell [35] A =0 p= —— Chan [40] At - 100 p= —— Maondkar and Powell [39] At -100ps
— Present study At =50 s — Exact sclition [39] At -25 ps —— Present study At —100 s
—— Linear analysis At <50 ps Fleeasne Wi Frrmrarienn A dumarle raemanees of tha demand daened o stth S T8
DYNORLER ANALYSS DYNOFLEX ANALYSIS
1
0
L I R et L S

“zmzmoECTo-o
AEmzmanmTDe—o

5.00E-06 T04E03 20603 30CE03 A01E03 S.00E-03 0000 [iln] e} 0003 0004 05 0005 o7 0008 03 0010
TIME TIME
Time History - Scludion Mordor 7 2 Time Hatory - Sohdian Moritor 7 2
Result Case 1 Result Case 3

DT O FLE> ARa L v SIS

11.0000.

1000001
9.0000-4
8.0000-
F.0000-
E.0000-4
5 00004 Result Case 3 (Linear — No tension stiffening)

4.0000-]

=.0000

z.0000-]

100004 - - -2 R R ! ST

0.0000.
0.00E OO 1.00E-0% = 00E-03 =.00E-03 4.00E-0Z 5.00E-
TIME
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Example 5.11 Response of a Moving Load on a SS Beam

Model: Beam-MovingLoad

The example evaluates the response of a concentrated moving load as it passes along the span of ss beam.

history solution.

v=68.1m's
W)
F=347000N
E, I, =9.02-10" No*
m, =11400 kg/m

X0

*

L=3m

The SS beam was modelled using 34-1m long
Type 6 beam elements.

The solution used a DyNoFlex linear time
history and the Moving Load Generator.

Reference Solution: Response Of Cable-Stayed and Suspension Bridges to Moving Vehicles, TRITA-BKN, Bulletin 44, 1998

-4.78E-0!

F52000 DynaFlex ModelBearm-Movingload

FS2000 DynaFlex ModelBeam-MovingLoad

400 -04:

-1.80E 0.

ATTE \
3

DAF =1.256

zo0aea-

-2.T0E-D:

Scaea-m

9T

-3B0E-O:

239

ooo 0133 0.255

037e

oo 0133 0255 0ve 0.500
0.500
Time Step Time Step
Displacements Result Case: 3 OptNor 3 Node: 20 Comp: 2
Displacements Resul Case: 4 Opto: 4 Node: 20 Comp: 2 ~
Dynamic Static
0.2
——— Exact

(=1
.
|
T

(=1
o
|
T

MNormalized vertical mid-span displacement
=]
- =N
t t

-
a
|
T

-
.

— Present
------ Static (present)
—--— AB4QUS

DAF plot from reference solution.

04 0.6
Vehicle position, x, /L

08
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Example 6.1 Heat Conduction across a Chimney

Mode: Chimney

The is a model evaluates the temperature distribution across the chimney due to conduction and convection.

The chimney is 4ft square and 1ft thick.

Flue Temperature = 100F; Extremal Temperature O F.

Thermal Conductivity 1 Btu/hr-ft-F
Internal Convection Coefficient = 12 Btu/hr-ft>-F
External Convection Coefficient = 3 Btu/hr-ft>-F

Reference Solution: ANSYS verification model VM100

N7

. Taking advantage of geometry and load symmetry only an 1/8 section is
E3

N9 MN10

modelled.

E1

M4 NE M3

'E6 E7

N1 NG MN12

a1 X NS M2

Sz-Direct
9.36E01
| 8.38E01
=l 7.39E01
by
[ 6.41E01
5.42E01
= 4.44E01
by
Ol 3.46E01
2.47E01
-1 A59E01
[y
5.01E00
Iax 9.36E01
Min 5.01E0D

Identical contour display as the reference solution.

Maximum wall Temp = 93.6F (93.6)

Minimum Wall Temp = 5.01F (5)
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Example 6.2 Cylinder Heat Conduction and Thermal Stresses

Model: CylinderThermal

A thick cylinder has defined internal and external wall temperatures. The objective is to establish a stress
distribution due to thermal stresses. A heat transfer solution establishes the temperature distribution, and a
stress solution then establishes the stress distribution.

OD =500mm

ID =200mm

E =205GPa; v = 0.3; Thermal Expansion Coefficient = 1E-5

Inside wall temperature = 100 C

Outside wall temperature=0C

Thermal conductivity = any non zero value (wall temperatures defined).

4
y b
- Lo E The model uses Type30 plane strain elements. Only a 15 degree segment is
o } . : : modelled. Ground couple referenced to a cylindical coordinate system are
il ’ used to provide tangential restraint.
7 A A A A A A A A A A

Reference Solution: S. Timoshenko, Strength of Material, Part Il, Advanced Theory and Problems, 3rd Edition,
D. Van Nostrand Co., Inc., New York, NY, 1956, pg. 232,article 44.

Case 1 - Temperature Distribution from the Heat Transfer Solution.

Case 2 - Thermal Stress Distribution from the Stress Solution

The refence solution values are shown in parentheses.

Inner Hoop = 203MPa (207)

Outer Hoop = 116 MPa (114)

Hoop stress contors from a model that used Type 40 axisymetric
elements for a solution to the same problem ( Ver-Example FEExp11).

A A A A
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Example 7.1 Hydrodynamic Wave Loading on a Marine Riser

Model:WavelLoad2

This an example of an inclined riser subjected to hydrodynamic wave loading.
Stokes 5™ Order wave theory is used to evaluate wave motions. This model is
based on the overall proportions of that in the reference solution.

The reference solution only evaluated the wave loading and divides the riser into
100 elements and uses 10 subdivisions per element for wave load evaluation. To
be more realistic the riser is divided into 14 elements. This gives an element
length of about 7m which is a typical of a span length for a riser of this diameter.

The riser is guided at each node using ground couple elements aligned to the riser
axis. A deadweight support is provided just above STW.

Riser Base: x=0; y=-70; z=0.

Riser Top: : x=30; y=20; z=30.
0OD=200mm;Cd=1;Cm=2
STW at y=0; Depth = 70m
H=30m; T=15s.

Buoyancy effected are neglected.

Reference Solution: USFOS, Theory Description of use Verification (no structural solution).

The following show a comparison of loading due to drag only.

100000 =N 1.00E+05
50000 2 \\ — 5.00E+04
.,..?l‘“’“"-w::_____,._- 0.00E+00
— -50000 % N
= { \ -5.00E+04
8 100000 -
S 150000 ."' ".‘ -1.00E+05
200000 ’i'. ‘f' . spx  —-usFosx_t
A ] = SpY —— USFOS Y | -2.00E+05
250000 4—— . sPz = USFOSZ
~300000 +—*— | | e
0 4 8 12 16 -3.00E+05
ABS Drag Only : Max X=292.7kN (291.5)  Max Y=37kN (36.48) Max Z=93.11kN (92.9)
ABS Inertia Only: Max X=8.6kN (8.89) Max Y=2.844kN (3.12)  Max Z=3.093kN (3.44)

46.30 kN

13.63 K

g
5

~
)
=
Z

@
-

=
2

iy

054 kN

N Major axis Bending Stress and Guide Reactions

2655 kI .

L 20.88 kN
tes0 RC 10 Drag Only-

Structural Global Reaction summaries.

RC 11 Inertia only.

RC 12 Drag & Inertia.

Note that Case 10 and 11 are at different phases.

BT Fx Fy Fz
kN kN kN
1a —-252._72 50 .65 20.7&
11 8.55 -2.50 -1.0%
1z -252 .85 51.72 17.&8
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Example 7.2 The Lifting of a Pipeline — Foundation Contact

Model: PipelinelLift

This an example of a pipeline lift in which a single point lift is used to raise the end of a pipe a specific height
and maintain a zero slope at the end. The model use Type 7 beam elements. These elements are supported
on a distributed foundation stiffness which provides surface contact restraint.

Reference Solution: The following equations can be derived from Macaulay’s beam method.

B\ L hE For this example:

_ E =203.4GPa
i L‘J
|_ |

| = 7.014E-3m*
iz Vg 6=1.5
Pi gl 1 :(zuesxs) 2 c=c~e7exs> This gives: L=95.9m; | = 31.98m; Mwax = 2799kNm; P = 393kN.
4 w w

The model properties represent a 36”0D 1”Wall being lifted in air when supported on a sand foundation.
The model used a DyNoFlex time history solution. The weight is applied and then the pipe is raised. Could be
done in one step.

The solution results are summarised below. These results are considered more accurate than the Macaulay
approach because the Macaulay assumes unrealistic boundary conditions at touchdown (zero slope, zero
moment and zero displacement).

"""""""""" == §=1507mm
0 =0.0012 rads

32.000

=== J ======5= Muax=2797kNm

=

P =387kN

/ \ Shear at the LHS and RHS of the lift point. Once the LHS is lifted

1aceced £/ A

¥ \‘
, \
o\

LH] [ 0675 1006 137 | emz [ 675 1006 13
Tin Sazp Tove Sinp

clear the LHS shear force remains constant.

—
-
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Example 7.3 Thermal Expansion of Buried Pipeline

Model: PipelineExpansion

This is an example of thermal expansion and thermal cycling of a buries pipeline. The model represents a 10km
concrete coated pipeline (512mm OD x 11mm wt) buried to a depth of 1m. The operational thermal
differential of 65C is applied. The soil stiffness characteristics are based on ASCE's "Guideline for the Design of
Buried Steel Pipe”. The evaluation of the soil springs used FS200’s Pipeline Properties utility.

The model uses a Type8 beam element. Type 7 non-linear couples are used to provide an axial kinematic bi-
linear soil spring. The loading is applied in two stages. Gravity then thermal. Note that the gravity case is not
actually required the expansion case — resistance is from the soil spring.

Reference Solution: Sample Calculation.

The apparent anchor for is given by : L= o.AT.E.A/ (H.w) u.w = Resistance = 6.6kN/m for this buried pipe.
For AT = 65 the L =379.2m. The locked in force is F = a.AT.E.A = 2503kN. This assumes rigid friction.

Force at 65C - 2499 kN Case 100
Because of frictional mobilisation no distinct anchor.
379m is within the mid curve portion.

Residual Force at OC - 1064 kN (max at E35) Case 101

e
Z X

Residual End displacement - 65.7mm Case 101

11111

End

FS2000 DynaFlex ModelPipelineExpansion F52000 DyNoFlex ModelPipelineExpansion FS2000 DyMoFlex Model PipelinsExpansion
o 1
\ 41
-Bm / \ / \

TN N
| i
LV 1l

100 1578 3.050 A5 £.000 0000 1000 2000 3000 4000 5000 GO0 0000 1000 2000 3000 4000 5000 6000
Time Step Time Step Time Step

Displacements Result Case: 103 OptNe: 103 Mode: 1 Comp: 1 Force Result Case: 103 OptNo: 103 Element: 110 Comp: 1 Force Result Caze: 103 Optho: 103 Element 35 Corp: 1

Displacement Mid Force Force at E35
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Example 7.4 Lateral Bucking of a Pipeline— Large Displacement - Contact

Model: Pipeline_Buckling

This is an example of pipeline buckling (elastic-plastic) due to axial compression due to thermal and pressure
effects. The model represents a 10km pipeline (767.4mm OD x 33.7mm wt) resting on the seabed. The pipeline
has an out of straightness of 500mm at the mid-section, defined as an undeformed shape. The operational
temperature and pressure differential of 60C and 30MPa is applied.

Reference Solution: AN INTEGRATED NUMERICAL APPROACH TO DESIGN OFFSHORE PIPELINES SUSCEPTIBLE TO LATERAL BUCKLING,
OMAE2015-42119. No information on the initial lateral shape only a magnitude of 0.5m given.

The local mesh density in the FS2000 model was twice that of that in the reference solution at the prop
location. No details of the material model used were available, but the deflection and curvature plots would
indicate a plastic solution was undertaken. FS2000 used a commonly used Ramsberg-Osgood relationship for
plasticity and a VM failure criteria.

Case 101 Effective axial force of 9284 kN (compares well with Case 1 from the reference plots) , *

rce at Apex (kN

PEERREERERE

Effective Axial For

1 s 2 25 s s BOE+00 LSIE+DD 200E+00 2505400 I00E+0D A50E+00 400E+00 450600 S.00E40
Lateral Displacement at Apex Relative to Straight Pipekne [m]

Case 102 Apex buckling load 7040kN. The axial force vs lateral displacement plot shows similar trends.

A

-2000

-3000

-a000

Effective Axial Force [kN|

-5000

-6000 FARD S
0 1000 2000 3000 4000 5000 5000 7000 80O 9000 10000

KP (m] il Force Sc¢ 1.0 Max=5.02E08 in Elem 363

Case 104 Show similar post buckles axial load distribution 5038kN max and 826kN at buckle.

Nrthing [m]
Curvature [

v
v

! PPN P
" \l ‘\/ \/’
; ) ] A
- .  — oucs -
N \

.

2

0

2

4

- w0 aw a0 w00 0m e mw P
2500 70 800 2900 s000 5100 5200 5300 5400 KP fm]

Easting [m]

Case 103 Max Lat Disp 15.6 m. Case 104 Curvature 0.0166

The distributions obtained are very similar. It should be noted that these results are very

close considering that an elastic solution produces very different results. Effective plastic

strains of 0.615% were obtained from this solution case. The plasticity is evident from the
peaked appearance at the location of the maximum.
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Example 7.5 Upheaval Bucking of a Pipeline — Large Displacement - Contact

Model: PipelineUHB

This is an example of pipeline buckling (UHB) due to axial compression due to thermal and pressure effects.
The model represents an 8” buried pipeline with initial vertical upward out straightness. The objective of the
model is to assess the susceptibility to Euler buckling for defined cover heights.

Reference Solution: Third party verification of FS2000 and ANSYS for this type of problem.

Figure 5.11 — Results Comparison — 0.5m Imperfection

-1000
i F5 20000
il LG
-1500
2000+

‘Axlal Buckling Farce (k)

-2500 """Q‘

2000 4

Sail Cover Hedght |m)

The model was generated using FS2000’s Pipeline Properties Utility (not exactly the same FS2000 model used
by the third party.

For comparison a 500mm Imperfection with 1000mm Top Cover case was used. This is Case 105 at the top of
the Batch File.

A static DyNoFlex time history solution is used to obtain the buckling load. The solution starts with an initial
straight pipe, imposes the imperfection, applies a top cover and ramps up the pressure and temperature.

F32000 DyMNoFlex Model:Pipeline UHE

1.E1ED4

/f~ This axial plot indicates that buckling occurs when the axial reaches
| 2090kN. This compares favourably with that shown in the above

N e verification reference.

The plot below shows the variation with other cover heights, again

I
R
— | | ; compares favourably the reference solution.
R R Rt B R
F
o 500mm Imperfection - Buckling Force vs Cover Depth
e -1000
| | H 5l 600 700 800 900 1000 1100 1200
1.BBEDE - -~ - -- -+ R RRRRRE SEUCE 1 IECREE SOCREEEERES 1250

-1500

-1750

-2 09E06-

0.ooo 10,000 20.000 30.000 40.000
Tirne Step -2250

Force Result Case: 105 OptMo: 105 Element: 249 Comp: 1

-2000

-2500

-2750

-3000
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Example 7.6 Static Analysis of a Steep Wave Riser Configuration — DyNoFlex/FS-Wave

Model: SteepWaveRiser

This example evaluates the shape and loading in a riser. The model uses Type 16(8) moment curvature beams
(suited for tension dominated flexible structures). Three cases: still water, positive current and negative
current. Top offsets of 25.7m applied with currents. DyNoFlex time history solution. Same mesh density as
described in the reference solution was used (considered a bit coarse).

Reference Soln: Efficient Method for Analysis of Flexible Risers, BOSS(Behaviour of Offshore Structures), Carl
M. Larsen et al.

: Negative Total riser length: L = 420m
ZT P i @rment  pending stiffness: E1= 3.417-10°Nm?
X 1_ Axial stiffness :  EA= 9.6010°N
- AN
8 i Mass per unit length of riser
Do incluced internal water: m = 1124kg/m
Additional mass per meter
E| € of buayancy section 1: m = 2224 kg/m
|i= Additional mass per meter
b B of buoyancy section II: my = 120.3kg/m
p = 1025 kg/m® Buoyancy per unit length of riser;  fy = 599.4 N/m
g = 9.81 m/s? Additional buoyancy in section [:  fg = 49870.3 N/m
Additional buoyancy in section 0:  fag = 2889.7 N/m
Drag coeffisient of Morison's formula Cp = 1.0
o) T L T RIS ey s e di .
ﬁ‘?-cliﬁ‘tﬁs.rﬁﬁiﬁ,a} ;,,._.;;-2";7:6.-,‘.?“ ST a s aasy  Hydro "V"::O'::d""'“'" D = 2955mm
= Bouyancy section: D = 900 mm
200+
T —— RIFLEX === RIFLEX
z .
% o e FENRIS z FENRIS
:C: 0.5 95 150 -
€ oo 2 positive current
€ s s and offset
g’ o %o
2" and offset B no current
1§~v4- §
2.0 negative current W g0
2.5 and offset negative current
and offset
5.0
8.5 AT TR e o W We e ®a e
O S e DL Meters along riser
Meters along riser
Moments FS2000 Ref
Mid 1.89 1.9
+veCurr 1.33 1.3
-veCurr 3.04 2.45
Top Tens FS2000 Ref
Mid 1.28 1.28
+veCurr 1.37 1.37
-veCurr 1.24 1.22

Moment 8¢ 1.0 Max=1.89E02 in Elem 2
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Example 7.7 Dynamic Slugging Flow in a Horizontal Pipe Loop

Model: Pipe_Bend_Flow

This is a model of 180-degree horizontal pipe loop. The pipe has a two-phase slugging flow regime.

Liquid Phase 30m long 42 kg/m
Vapour Phase 4 5m long 8 kg/m
A .~ Velocity 10 m/s
- 0OD=280mm t=20mm Radius=6.366m

Reference Solution: “Slug flow induced oscillations on subsea petroleum pipelines”, Sergio N. Bordalo , Celso K. Morooka, Journal of
Petroleum Science and Engineering(2018).

The bend is formed by segmented straight Type 6 pipe elements. The dynamic loading is generated using
FS2000’s moving load generator. This generator enables gravitational and inertial loads to be evaluated from a
train of distributed or concentrated moving loads. A DyNoFlex dynamic time history solution is employed to
obtain the response.

The plots below show a comparison of the horizonal (x & z) reactions at the supports for the inertia loads.

FS2000 DyNoFlex Madal:Pige_Bend_Flow

5.00E0
FXG - Node C2 - Slug 20/20, 10m/s
A50ED3-- -
0.0
amenzad |5
2B0E03 1.0 4
Eocomn| =
n Z 20 1
¢ omenaf]- v
. . 530 +
HEEAT L B B =
3 1.50E034 - - 1 O O I T -4.0
=1 S A O A 5.0 ‘ ST Leay i
: | 0 5 10 15 20 25 30 35 40
soneozq -4 -4
Time (s)
0.00E 00,
0000 5000 10,000 15.000 20000 25000 30000 35.000 40000
Time 5tep
Forces Fissult Cass 6 (pito 6 Coupie:1 Corp: 3
FS2000 DyMoFlex Maodel:Fipe_Bend_Flow
400 ; ; T FYG - Node C2 - Slug 20/20, 10 m/s
200E03-] 4.0
200054 |- 20 -
i i ‘ z
Conemk -ttt =
o H H
@ !
e ] : | o 0.0
P T =111 R L B M 5
N : : | =
¢ 10Es 2.0
1 : : :
40 + by i bdaatiaas
-30EE4 0 5 10 15 20 25 30 35 40
Time(s)
-4 0EDE T v v
0.050 10.038 20,025 30013 40,000
Tims Step

Forces Result Case: B OptHo B Couple: T Compe 1
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Example 7.8 Heave Frequency of a Floating Column

Model: HyWind

The model is an extract from a larger model which was used to simulate the movement of a 3-line moored
column (wind turbine) under wave action. It has been simplified to evaluate only the heave frequency.

The solution is obtained using a DyNoFlex dynamic time history solution. The hydrodynamic data is defined
using FS-Wave (only Stillwater used).

Reference Solution: Basic Theory - Heave Period = 2m(m/k)%°

The diameter of the column varies from 14.4m to 4.1m.
The mass of the structure is 13,333 tonnes (steel weight and distributed ballast).

The total buoyancy is 13,068 tonnes when in its initial position. This when the N28 is
at STW i.e. the Y origin.

The model has no restraints, and equilibrium will only exist when the column
buoyancy force = gravitational force.

1 The added mass coefficient is set to zero for purely axial movement. Rayleigh
] Damping Coefficients provide 10% damping at 25s to 30s periods.

The diameter at the interface is 9.5m.
Floating stiffness k = pgA = 1027*9.81*rt*D?/4 = 714kN/m

Heave frequency = 2rt(m/k)%° = 27.16s

The initial transient from the application of the loads indicates final displacement of
about 3.64m i.e. as it sinks to its mean SWL. The period of oscillation in the plot is in
the region of 27.15s

DYMNOFLEX ANALYEIS
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